
NCRISET-2017 e-ISSN: 2456-3463

International Journal of Innovations in Engineering and Science, Vol. 2, No.6, 2017

www.ijies.net

123

Implementation Of a RISC Based SOC For

Handling And Packaging Industrial Process

Rupali V Bhange

Department of electronic and telecommunication

M. Tech (VLSI), GHRIET, Nagpur

Nagpur, India

rupalibhange94@gmail.com

 Yogesh M Motey
Department of electronics and telecommunication

 Assistant Prof. (VLSI), GHRIET, Nagpur

Nagpur, India

Yogesh.motey@gmail.com

Abstract—In the era of industrialization, technological revolution

reduced the intervention of humans to assist machinery. The

privatization slogan has increased the competition among

industries which leads to origin of new products/designs for

automation. The paper presents, one such, design and

implementation of 64-bit RISC processor on SOC for industry

automation, mainly useful for packing. The design includes

processor with BIST features; it is a mechanism that allows a

machine to test itself. Here RISC processor is used to decrease

the number of instructions and they execute the instruction at

faster rate. Later the design is integrated on System on Chip

(SoC) to obtain a single chip which reduces the overall power

consumption. The design and synthesis is done by verilog and

verified in Altera Quartus 11.0 RTL compiler, SoPC Builder,

Nios II SBT Eclipse, and Modelsim 10.1c.

Keywords-industrial automation, reduced instruction set computer,

system-on-chip, handling and packaging, synthesis, simulation,

verification, hardware description language

I. INTRODUCTION

Industrial Automation is an important market segment which

deals with semi or complete automation of the industrial

manufacturing machinery and associated tools.

Microcontrollers have been playing an important role in

Industrial Automation markets for performing automated tasks.

For high-end process automation, the usage of customized or

highly specific Programmable Logic Controllers and x-86 or

Power-PC based Single Board Computers is common.

Traditional RISC based Chipsets and System-on-Chip products

have focused exclusively on Consumer Electronics and related

fields. However, there is a compelling reason for having

customized RISC based Chipsets which can cater to market

verticals like Industrial Automation, Portable Instrumentation,

Portable Medical and Point-of-Sale.

In these market segments, the traditional approach has been to

utilize a general purpose RISC chipset which is then interfaced

with custom ASIC to achieve the intended functionality for an

Industrial Automation or Retail Point of Sale kind of End-

Product. This approach not only increases the BOM cost, but

limits the scalability of the product for future generations and

OEM/ODMs end up spending significant amount of their R&D

efforts in building new products for these markets.

For example, let us consider the most common required

interfaces for an Industrial Automation product i.e., ADC and

CAN Interfaces. In traditional approaches, we would typically

have the below mentioned configuration. Depending on the

logic implemented inside the custom ASIC/FPGA, the Analog

Front End may be a separate/discrete IC or maybe

implemented inside the custom ASIC itself.

The above approach for designing products for Industrial

Automation does not scale well and causes huge turn-around

time for the Device Manufacturers whenever they are planning

/thinking of introducing new products into the market.

II. MOTIVATION

In this section, we will explore the motivation and the need to

integrate a peripheral like the PRU (Programmable Real-time

Unit) within the System-On-Chip and later examine one

specific use-case of the PRU i.e., Communication Sub-system

for Industrial Automation.

For real-time applications such as Programmable Logic

Controllers, Control Machinery, the requirement to respond to

real-time events is a critical one. If we take any modern

System-On-Chip, they typically consist of at least two levels

of Interconnect/bus and also multiple levels of

cache/internal/external memory which makes it difficult to

respond to real-time events within tens of nanoseconds.

So this introduces a kind of designer’s dilemma that while

modern System-On-Chip offers the best

connectivity/interfaces, cache and power requirements, at the

same time cannot handle real-time events/processing

withintens of nanoseconds. To overcome such performance

issues, there has been one design argument that we need to

integrate or merge Special Real-time Co-processors along with

the regular RISC chipsets. This is analogous to integration of

NCRISET-2017 e-ISSN: 2456-3463

International Journal of Innovations in Engineering and Science, Vol. 2, No.6, 2017

www.ijies.net

124

special purpose Audio/Video Co-processors to off-load the

Audio/Video processing logic to custom real-time cores.

Another associated design challenge is that adding a real-time

co-processor may not solve the real- time performance issue

altogether. The real-time co-processor should also have

necessary interfaces/operational infrastructure to be able to

detect real-time events being triggered from the external world

and they should be able to detect the occurrence of the real-

time event within a few nanoseconds.

This leads us to the second design conclusion that these Real-

time Co-processors should also have their own interrupt

Infrastructure and access to the external world via some kind of

I/O Pins or serial interfaces. Typically providing access to at

least some of the peripherals would also make the real- time

coprocessor much more flexible in terms of integration and

general usage.

To summarize, the Real-time Coprocessor should meet/address

the following requirements:

1. Have its own instruction execution unit independent of the

RISC core

2. Should not utilize instruction pipeline cycles which will not

guarantee real-time execution

3. Should have its own interrupt controller/mechanism to be

able to detect real-time external events

4. Should have a separate instruction and data memory to

ensure that the instruction fetch and data fetch are not

multiplexed on the same lines

5. Should also have access to the external world via some

General Purpose Pins or peripherals

6. Should preferably share the interconnect/external bus with

the main RISC Core such that the real-time co-processor can

also configure/control the memory mapped peripherals such as

UART, PWM, SPI etc.

I. SOPC (SYSTEM-ON-A-PROGRAMMABLE-CHIP)

BUILDER

SOPC builder is a powerful system development tools for

creating systems based on processors, peripherals, interfaces

and memories. SOPC Builder is implemented for the purpose

of generating a complete system-on-a-programmable-chip

(SOPC) by consuming less time than the accustomed

integration methods [4].

Altera has SOPC Builder functionality built in Quartus II,

which accordingly connects the soft-hardware components to

construct a complete computer system that can be controlled on

any of the FPGA chips and is also capable of producing

interconnect logic automatically. It is outfitted with a library of

built-in components such as a Nios II soft processor, memory

controllers, interfaces, standard peripherals and custom

peripherals.

In SOPC Builder, the system components are routed in a GUI

(Graphical User Interface). The GUI is exclusive in

configuring the soft-hardware components. It is a general-

purpose tool for creating systems that includes a soft processor

apart from the Nios II processor. It also contributes to writing

software and system simulation.

A. Core Functionalities of SOPC Builder

• Describes the hardware of the system.

• Performs the system generation.

• Performs memory mapping for initiating the software

development.

• Produces test bench to simulate the design.

B. Architecture and Design of SOPC Builder

Designs using SOPC Builder are generated to develop a top

level HDL (hardware description language) file by connecting

various modules together. These various modules are

considered the building blocks for the SOPC Builder system

[9]. For the connection of multiple components in the system,

the modules use Avalon (Avalon switch interconnect)

interfaces, such as memory-mapped, streaming and IRQ

(interrupt request).

C. SOPC Components

The components in SOPC Builder are referred as hardware

blocks of the system. They contain HDL descriptions of the

hardware of the components and interfaces used for the

hardware. They also contain the description of the parameters

that determine the operation of the components (Fig. 1). The

SOPC components are connected to the system interconnect

fabric using the Avalon Memory-Mapped interface (Avalon

MM) or the Avalon streaming interface (Avalon-ST) [4].

Figure 1. SoPC Builder System

D. Types of SOPC Components

SOPC Builder’s inbuilt components are

a. Static HDL Components

b. Generated HDL Components

NCRISET-2017 e-ISSN: 2456-3463

International Journal of Innovations in Engineering and Science, Vol. 2, No.6, 2017

www.ijies.net

125

c. Composed HDL Components

d. Custom Components

e. Third-Party Components

(a) Static Components: These are the components that accept

the VHDL parameters. Examples: Address widths, Data

widths and FIFO depths.

(b) Generated Components: These are the components whose

hardware description language file is generated based on the

value of its specified parameters. Example: A parameter that

controls the number of interfaces.

(c) Composed Components: These are the components that are

constructed from combinations of other components

(d) Custom Components: The design flow used to merge the

custom components into the SOPC Builder is as follows:

1. Determine the interfaces required by the custom

components.

2. Write the logic for each custom component.

3. Develop the custom components with the hardware

description language files by using the component editor.

4. Represent the custom component in the system by an

instance.

(e) Third-Party Components: These components are built by

third parties. Components external to the SOPC Builder For the

components that interfere to external logic or off-chip devices

with Avalon- compatible signals outside the SOPC Builder

system, the component files describe only the interface to the

external logic. The connection of signals a the top-level of

SOPC Builder to pins or logic defined outside the system is

done manually.

E. SOPC Design Flow

The design flow of SOPC Builder is as follows (Fig. 2)

a. Add components by Component Editor.

b. Initiate Simulation of the system.

c. Develop the system design by adding components, IRQs

and addresses.

d. Start the system generation.

e. Conduct system level simulation.

f. Compile the system design.

g. Download .sof file to an Altera FPGA.

h. Perform Testing.

Figure 2. SoPC Design Flow

F. Avalon Switch Interconnect

The Avalon Memory-Mapped (Avalon-MM) interface has a

bandwidth of steep structure generally used for interfacing the

components of the system. The Avalon switch interconnects

uses less logic but supplies absolute flexibility. This

interconnect is a cross-connect fabric used for the purpose of

switching and multiplexing.

The Avalon switch interconnect fabric is a combination of

interconnect and logic resources. It is used for stocking the

Avalon memory mapped master and slaves on the components.

It is referred to a device having information about connections

of the entire system and its components. It assures that

connections between the master and slaves are routed

precisely. This meets the requirements of the components.

The interconnect fabric permits the connection of an unlimited

count of master components and slave components. These

master and slave components can have a one-to-one

connection, a one-to-many connection, a many-to-one

connection, or a many-to-many connection. The system

interconnect fabric is used to support the interfaces for the on-

chip components of the system and interfaces for the off-chip

devices of the system. In this interconnect fabric, master

components and slave components with altered data widths are

supported.

The system interconnect fabric also serves as a platform for the

master and slave components running with several clock

domains. It also supports master and slave components with

several memory mapped ports.

The system implementation fabric for the Avalon-MM

interfaces acts as a partial crossbar interconnects structure. The

partial crossbar interconnect structure is a matrix with multiple

inputs and multiple outputs. This interconnect structure

arranges simultaneous paths between the master and slave

components. In the Cyclone II FPGA, routing resources and

synchronous logic constitute the system interconnect fabric.

G. Functionalities of System Interconnect Fabric

a. Decoding Address

b. Multiplexing Data path

c. Insertion of Wait State

d. Pipelined Read Transfers

e. Multi-master System Arbitration

f. Burst Adapters

g. Interrupts

h. Reset Distribution

H. Automated System Generation

SOPC Builder system integration tools automatically perform

the process of configuration of the processor features; hence

the hardware of the design is produced that is used to program

an Altera device. The graphical user interfaces (GUI) help in

NCRISET-2017 e-ISSN: 2456-3463

International Journal of Innovations in Engineering and Science, Vol. 2, No.6, 2017

www.ijies.net

126

structuring of Nios II systems with multiple peripherals and

memory interfaces (Fig. 3).

Figure 3 .SoPC Builder GUI

After system generation, you can download the design onto a

board, and debug the software executing on the board.

II. NIOS II SYSTEM ON ALTERA’S DE2 BOARD

The Nios II processor and many other components such as

standard peripherals and custom peripherals are used for the

formation of a total system that can be integrated into a Nios II

system on Altera’s DE2 board [3]. The process of interfacing

the Nios II processor and peripherals to the DE2 board chips is

enabled on the Cyclone II FPGA chip. The interconnection

network connecting these components in the FPGA chip is

called the Avalon Switch Fabric (Fig. 4).

Figure 4. Nios II System on DE2

The memory blocks available in the Cyclone II FPGA chip

serve as the on-chip memory for the Nios II processor. These

memory blocks can be connected to the Nios II processor

directly with the help of the Avalon network. The Input /

Output interfaces are used for connecting I/O devices. A

JTAG UART interface is used for the purpose of providing a

Universal Serial Bus link between the Altera’s DE2 board and

the host computer to which the board is connected. This

Universal Serial Bus link is called the USB-Blaster. The JTAG

Debug module is used by the host computer to control the Nios

II processor, downloading programs into the memory, starting

and stopping execution. The memory chips such as SRAM and

SDRAM can be connected by applicable interfaces. A

hardware description language is used to define all the Nios II

system components on the Cyclone II FPGA chip.

A. Nios II Processor

The Nios II processor is a configurable RISC processor

[10]. Hardware structure includes:

a. Functional units of the Nios II architecture

b. Fundamentals of the hardware implementation

B. Fundamentals of the hardware implementation

The hardware implementation of Nios II architecture

explains an instruction set. Any functional unit whose

hardware is implemented can be programmed in software.

Every hardware implementation has different objectives, for

example, that the size of the core should be small and must

yield high performance (Fig. 5). These features help the Nios II

architecture adjust to many different applications.

Implementation of the processor core specifically requires any

of three trade-offs: more performance or less performance of a

feature; inclusion of a feature in the core or exclusion of a

feature; and implementation of the hardware and software

programming of the features included in the core.

Figure 5. Nios II Core Block Diagram

C. Nios II Processor Core Architecture

The architecture of Nios II processor core consists of [3]

a. Register file

b. Arithmetic logic unit (ALU)

c. Interface to custom instruction logic

d. Exception controller

e. Interrupt controller

NCRISET-2017 e-ISSN: 2456-3463

International Journal of Innovations in Engineering and Science, Vol. 2, No.6, 2017

www.ijies.net

127

f. Instruction bus

g. Data bus

h. Memory management unit (MMU)

i. Memory protection unit (MPU)

j. Cache memories

k. Tightly-coupled memory interfaces for instructions and data

l. JTAG debug module.

D. Customizing Nios II Processor

Altera FPGAs offer to add new features in order to increase the

performance of the Nios II processor. The advantage of

customization is elimination of unnecessary processor features

and peripherals to suite the hardware design in a smaller and

lower-cost device. The following are the possibilities to

program customized pins and logic resources available on the

Altera DE2 board [1]:

a. Rearrangement of the pins on the chip is the best way to

reduce the design of the board. For example, address and data

pins can be moved for external SDRAM memory to cut the

traces of the board in short.

b. The use of extra pins and logic resources on the chip is

independent of the processor. Extra resources supply a few

more extra gates and registers for the purpose of designing the

board (Fig. 6). Also, these extra resources affect the complete

system. Using extra pins and logic resources on the chip, the

additional peripherals for the Nios II processor can be

implemented. We can easily access the additional peripherals

from the library of SOPC Builder, which are used for

connecting the Nios II processor [3].

Figure 6 . Altera DE2 Board Components and Interfaces

E. Features of DE2 Board (Altera Cyclone II 2C35 FPGA)

Following is the list of features available on the DE2 Board [4]:

a. USB Blaster is inbuilt on the board mainly for programming

purposes and for controlling API

b. JTAG Mode and AS Mode are supported

c. 8 MB (1M × 4 × 16) SDRAM

d. 1 MB Flash Memory

e. SD Card Port

f. 4 Push-buttons

g. 18 DPDT (Double Pole Double Throw) switches

h. 9 Green User LEDs

i. 18 Red User LEDs

j. 50 MHz Oscillator

k. 27 MHz Oscillator

l. 24-bit Audio CODEC including line-in/out, and mic-in jacks

m. VGA DAC

n. VGA out connector

o. TV Decoder

p. TV-in connector

q. Ethernet Controller

r. USB Controller as Host and Slave

s. RS-232 Transceiver and 9-pin connector

t. Mouse and keyboard connectors (PS/2)

u. IrDA transceiver

v. 2 x 40-pin Expansion Headers

III. PROPOSED METHODOLOGY

Fig.7. illustrates the process of material handling and

packaging system, which shall be automated using the

programmable logic controller. This is a step by step process

on which corresponds to the input and output peripherals that

are needed in programming the ladder diagram. Included in the

automation is the placement of box, filling of materials,

transferring, checking, and sealing of the final product, or item.

The overall design is implemented using an experimental

prototype.

Figure 7. Diagrammatic structure of automated system

 Feeding station

 Roller/conveyor belt

Filing station

Product to the box

Checking station

Accept or reject product

Lid folding station

Phase 1 as well as phase 2 folding

Sealing station

Roller/conveyor belt

Finished package of product

NCRISET-2017 e-ISSN: 2456-3463

International Journal of Innovations in Engineering and Science, Vol. 2, No.6, 2017

www.ijies.net

128

Figure 1.

Figure 2.

Figure 8. Conceptual Framework for Automation

Fig.8. shows the general PLC block diagram used by the

researchers to implement the automation of the system. From

the manual operation, a programmable logic controller is used

to convert the system into an automated process. Input

components such as sensors and switches are used to indicate

the condition corresponding to the hardware flow diagram of

the PLC project design. The programmable logic controller

interfaced the system and provided the ladder diagram for the

design. Output components such as motors and pneumatic

cylinders are used to indicate the desired objective of the

system. Also, fig.9. Show first phase of system. As shown, it

consists of three stations namely box feeding, the filling, and

checking stations. The 2”x2”x2” card-board box is used as the

object to be transported. The researchers used a small marble

with the same weight to act as a sample material for

experimental testing the prototype.

Figure 9. Flow for feeding, filling, and checking stations

Figure 10. Flow for lid folding and sealing stations

Figure 11. Sealing process station

Fig.10. shows the second phase of the design project. It is

composed of two stations namely lid folding and sealing

station. Fig.11. illustrates the detailed automated process for

the packaging station. A 1-inch width packaging tape is used to

seal the boxes in a single linear direction. A proximity sensor is

used to detect the length of the tape that will seal the boxes. A

tape cutter made of stainless steel is also used in this station.

Below is the discussion of whole operation:

1. When the start button is pressed, box shall be push under

the hopper by cylinder 1.

2. Box sensor 1 is provided as to sense the presence of box

under the hopper. When a box is detected, hopper motor runs,

thus; dropping marbles to the box (box is stationary).

3. A counting sensor is provided as to monitor the correct

number of marbles being drop to the box.

4. After the desired numbers of balls is dropped, a load sensor

activates as to determine if the loaded box is overload, under

load, or exact load. Good items are pushed to the next station,

and phase by cylinder 2, while the under load box and the

over load is pushed away from the line by cylinder 3, which is

to be checked manually.

5. Having a good item box or load triggers the conveyor 2, to

conduct or start its operation. The approaching box is

monitored by the box sensor 2.

6. When a box is sensed by box sensor 2, it shall activate

cylinder 4, and folding the lid of the first section of the side of

the box.

7. The second lid and section is folded, as the box moved on

the specialized lid folding the obstacle, or as the box makes

progress on the conveyor.

8. Having a partially closed box, and a continuous running

conveyor, it passes to the sealing station which finishes the

packaging process. At this station, a packaging tape, and a

cutter is positioned on a flip type window as to allow the

incoming box to pass beneath it.

9. The tape cutter sensor shall be triggered, if the flip type

window is moved from upward to downward position. This

shall activate and turned the tape cutter to move downward via

cylinder 5, and cut the tape.

10. Having finished the required task, the system shall point

out if another process is to be commenced as invoke by the

operator.

Programmable

logic based on

RISC 64

O/P devices

-indicating

light, motor

I/P devices

-proximity,

load sensor,

switch push

button

NCRISET-2017 e-ISSN: 2456-3463

International Journal of Innovations in Engineering and Science, Vol. 2, No.6, 2017

www.ijies.net

129

11. The finished item shall be collected at the end of the line

by the on-duty personnel.

IV. CONCLUSION

Today industrial automation software requirements include

capability to implement applications involving widely dis-

tribute devices, high reuse of software components, formal

verification that specifications are fulfilled. In this paper, an

object oriented approach, the programming language together

with a proper way to organize the inputs and outputs of FBs

and supervisory control are proposed to implement industrial

automation control systems to meet the new challenges of this

field.

V. REFERENCES

[1] Altera Audio/Video Configuration Core for DE2-Series Boards. (July

2010). [Online]. Available: ftp://ftp.altera.com/

[2] SD card IP Core. Altera University Program Secure Data Card IP Core.

(March 2009). [Online]. Available: ftp://ftp.altera.com (accessed
September 19 -2012)

[3] Wolfson Electronics. (2004, April). Portable Internet Audio CODEC
with Headphone Driver and Programmable Sample Rates. (WM8731

Rev3.4). [Online]. Available: https://instruct1.cit.cornell.edu/(accessed

October 22-2012)

[4] Altera SOPC Builder User Guide. (2010, December). [Online].

Available: http://www.altera.com/literature/ug/ug_SOPC_builder.pdf

[5] Altera Embedded Peripherals IP Guide. (2011, June). [Online].

Available: http://www.altera.com/literature/ug/ug_embedded_ip.pdf

[6] S. Moslehpour, K. Jenab and B.S. Pabla, “Implementing a soft core
NIOS II processor for VGA application,” International Journal of

Engineering Research and Innovation. vol.4, no.2, pp. 12-26, 2012.

[7] S. Moslehpour, K. Jenab and S. Valiveti, “GPS time reception using

Altera SOPC builder and Nios II: Application in train positioning,”

International Journal of Industrial Engineering and Production
Research, vol.23, no.1, pp. 13-21, 2012.

[8] S. Moslehpour, K. Jenab and B. K. Matcha, Design of the Nios II

System for the Playing of Wave Files on an Altera DE2 Board, 2012.

[9] J. O. Hamblen and T. S. Hall, “Using system on a programmable chip

technology to design embedded systems,” IJCA, vol.13, no.3, pp. 1-11,
2006.

[10] My First NIOS II Software, Altera Corporation based on Altera Complete

 Design Suite Vision9.I, January 2010 [online] :http://www.altera.com/.

