
https://doi.org/10.46335/IJIES.2023.8.4.1 e-ISSN: 2456-3463

Vol. 8 , No. 4, 2023, PP. 1-7

International Journal of Innovations in Engineering and Science, www.ijies.net

1

Detection of Diabetic Retinopathy Using Deep

Learning

Shubham Vartak
1
, Ajinkya Parte

2
, Soham Ajgaonkar

3
, Hitesh Ghagave

4

1,2,3,4
UG student, Shree L.R. Tiwari College of Engineering, Thane, India, 401107.

soham.ajgaonkar@slrtce.in

 Received on: 29 March,2023 Revised on: 18 April,2023 Published on: 20 April,2023

Abstract— Diabetic retinopathy is a major problem

worldwide and many people are losing their vision

because of it. The disease gets severe if it is not treated

properly at its early stages. In this disease, the retinal

blood vessel gets damaged due to high blood sugar levels

which eventually blocks the light that passes through the

optical nerves, making the patient with Diabetic

Retinopathy blind. Diabetic Retinopathy is detected using

manual screening, but this requires a skilled

ophthalmologist which may not be available everywhere

and thus diagnosis takes a lot of time. Therefore, we

decided to build a deep learning model using which we

will be able to detect multiple stages of severity for

Diabetic Retinopathy. So, we studied and built widely-

discussed models - Support Vector Machine (SVM) and

Convolutional Neural Network (CNN) - and conducted a

comparative study to determine the most suitable model.

We found that CNN outperformed SVM in terms of

accuracy and efficiency, making it the most suitable model

for detecting multiple stages of severity for Diabetic

Retinopathy. Thus, this automatic diabetic retinopathy

detection model built using CNN can replace manual

screening, enabling ophthalmologists to focus on patient

care. Additionally, this model can assist inexperienced

ophthalmologists in accurately diagnosing diabetic

retinopathy.

Keywords— Diabetic Retinopathy, Blind, Retina, Deep

Learning, Ophthalmologist, Manual Screening

I. INTRODUCTION

According to International Diabetes Federation’s report,

in 2021 approximately 537 million adults (20-79 years)

have diabetes. The total number of people having diabetes

is projected to rise to 643 million by 2030 and 783 million

by 2045. The International Diabetes Federation (IDF)

reported that diabetes caused 6.7 million deaths in 2021. In

India, 1 in 12 adults, or more than 74 million people living

are diabetes patients. So, we are the second highest in the

world after China, which has 141 million diabetes patients.

Diabetes is caused because of the excess growth of glucose

in the blood. A person affected with diabetes is vulnerable

to kidney failure, bleeding teeth, lower limb confiscation,

nerve failures, and so on. Having diabetics for a long time

causes severe blood vessel damage. Due to this, neurons

present in the brain get damaged and cause Diabetic

Retinopathy (DR) which results in retinal infection and

eventually vision loss.

This is Evidence that DR is a major issue nowadays. This

motivated us to build a model which will help to reduce the

severity of this problem.

There are various techniques for detecting the affected eye,

some of them are slit-lamp biomicroscope, optical

coherence tomography (OCT), and fundus images.[5]

Symptoms like venous beading, microaneurysms,

hemorrhage, neovascularization, etc. are used to diagnose

DR [1].

DR is classified into non-proliferative DR (NPDR) and

Proliferative DR (PDR). Based on the severity it is further

classified as follows:

A. No apparent retinopathy: In this stage, there are no

signs of diabetic retinopathy in the eye.

B. Mild non-proliferative retinopathy: In this stage, there

are small areas of balloon-like swelling in the retina’s

blood vessels. Microaneurysms, Venous beading,

Cotton wool spots may be visible.

C. Moderate non-proliferative retinopathy: In this stage,

some blood vessels that feed the retina are blocked.

https://doi.org/10.46335/IJIES.2023.8.4.1 e-ISSN: 2456-3463

Vol. 8 , No. 4, 2023, PP. 1-7

International Journal of Innovations in Engineering and Science, www.ijies.net

2

Hard exudates and Haemorrhages may be visible.

D. Severe non-proliferative retinopathy: In this stage,

many blood vessels that feed the retina are blocked,

leading to the growth of new blood vessels. All the

above mentioned signs become more pronounced and

Ischemia may be visible.

E. Proliferative diabetic retinopathy: In this stage, the

new blood vessels are fragile and can bleed into the

jelly-like substance in the center of the eye, leading to

severe vision loss and even blindness.

Neovascularization, Scarring in the retina due to blood

vessel damage, Severe haemorrhages, Macular edema,

Retinal detachment, Vitreous haemorrhage, Optic

neuropathy may be visible.[4]

In many rural areas, there are very few or no experienced

ophthalmologists and this delays the diagnosis as well as

treatment.[6]

Thus, we decided to build a deep-learning model for

diagnosing DR using fundus images.

II. PROPOSED WORK

In this study, we aim to detect diabetic retinopathy using

deep learning techniques on fundus images. We first

explored the use of SVM (Support Vector Machine), which

has been widely used for this purpose.[1] However, after

reviewing several recent research papers [3,2], we decided

to implement CNN (Convolutional Neural Network) as
well, as it is considered to be a better option for this task.

In this proposed work, we plan to train and compare the

performance of both SVM and CNN models on a large

dataset of fundus images. The results of our comparative

study will provide insights into the effectiveness of these

models for diabetic retinopathy detection.

III. STUDYING DIFFERENT MODELS

There are many models used for Diabetic Retinopathy

detection but the most discussed among them were SVM

and CNN.

A. Support Vector Machine

Diabetic retinopathy is a condition that affects the blood

vessels in the retina and can cause vision loss if not

detected and treated early. Support vector machine (SVM)

is a type of supervised machine learning algorithm that can

be used for diabetic retinopathy detection.

The SVM algorithm works by finding a hyperplane in the

feature space that separates the different classes of data.

In the case of diabetic retinopathy detection, the features

could be extracted from retinal fundus images, such as the

presence of microaneurysms, hemorrhages, exudates, and

other lesions.

Here are the steps involved in using SVM for diabetic

retinopathy detection:

1) Data Collection: Collect a dataset of retinal

fundus images that are labeled for diabetic retinopathy.

This dataset should include images from both healthy and

diabetic patients.

2) Preprocessing: Preprocess the images to remove

noise and standardize the image size and orientation.

Image normalization techniques can also be used to

improve the accuracy of the SVM algorithm.

3) Training: Split the dataset into a training set and a

validation set. Train the SVM algorithm on the training set

using the extracted features and their corresponding labels.

4) Testing: Test the SVM algorithm on the validation

set and measure its performance using evaluation metrics

such as accuracy, precision, recall, and F1 score.

5) Deployment: Deploy the trained SVM algorithm

on new retinal fundus images to detect diabetic

retinopathy.[7]

SVM is a popular machine learning algorithm for diabetic

retinopathy detection because it can handle high-

dimensional data and is robust to overfitting. However, it

requires careful feature selection and hyperparameter

tuning to achieve high accuracy.

B. Convolutional Neural Network:

Convolutional Neural Networks (CNN) are a type of deep

learning algorithm that can be used for diabetic retinopathy

detection.

The CNN algorithm works by learning hierarchical

representations of the input data through convolutional and

pooling layers. In the case of diabetic retinopathy

detection, the input data could be retinal fundus images,

and the CNN could learn to detect the presence of

microaneurysms, hemorrhages, exudates, and other lesions.

Here are the steps involved in using CNN for diabetic

retinopathy detection:

1) Data Collection: Collect a dataset of retinal

fundus images that are labeled for diabetic retinopathy.

This dataset should include images from both healthy and

diabetic patients.

https://doi.org/10.46335/IJIES.2023.8.4.1 e-ISSN: 2456-3463

Vol. 8 , No. 4, 2023, PP. 1-7

International Journal of Innovations in Engineering and Science, www.ijies.net

3

2) Preprocessing: Preprocess the images to remove

noise and standardize the image size and orientation. It

also includes applying different filters to improve the

quality of images. One well-known method of

preprocessing is Ben Graham's pre-processing method. It

includes resizing the image, Green Channel Extraction,

Gaussian Smoothing, Contrast Limited Adaptive

Histogram Equalization (CLAHE), and Grey Scaling. It

improves the performance of the model.

3) Training: Split the dataset into a training set,

validation set, and test set. Train the CNN algorithm on the

training set using the preprocessed images and their

corresponding labels.

4) Validation: Validate the CNN algorithm on the

validation set and measure its performance using

evaluation metrics such as accuracy, precision, recall, and

F1 score.

5) Optimization: Tune the hyperparameters of the

CNN algorithm, such as the number of layers, the size of

the filters, the learning rate, and the regularization, to

improve its performance on the validation and test sets.

6) Testing: Test the CNN algorithm on the test set

and measure its performance using the same evaluation

metrics used during validation.

7) Deployment: Deploy the trained CNN algorithm

on new retinal fundus images to detect diabetic

retinopathy.

CNN is a powerful deep learning algorithm for diabetic

retinopathy detection because it can learn complex features

from the input data and achieve high accuracy with large

datasets. However, it requires a large amount of labeled

data and significant computational resources for training

and optimization.

IV. Implementation

A. SVM Implementation:

Following are the SVM implementation steps :

1) Importing Data:- We used a dataset consisting

of 89 images with corresponding labels indicating affected

and unaffected retina. The dataset is divided into two

classes where 1 denotes the affected eye, and 0 denotes the

unaffected eye.

2) Pre- Processing:- After loading the images we

convert them to grayscale using the OpenCV library. After

grayscale conversion, adaptive histogram equalization is

applied to the image to enhance its contrast. The resulting

image is then stored as a flattened 1D numpy array.

This process is repeated for all 90 images in the dataset.

Then the preprocessed grayscale images are loaded and

converted to 2D format from their flattened form.

After that, a Discrete Wavelet Transform (DWT) is

performed on each image using the ‘Haar wavelet’ which

is one of the simplest and most commonly used wavelets.

Wavelet analysis is a powerful signal processing technique

that allows a signal or image to be decomposed into a set

of basis functions called wavelets. These basis functions

are used to represent the original signal or image in a

compressed form, which can be used for various

applications such as image compression, noise reduction,

and feature extraction.

The Haar wavelet is a type of wavelet function that has a

simple step-like shape, making it easy to implement and

understand.

 The DWT is performed on the 2D preprocessed image.

The 2D DWT coefficients obtained from the DWT are then

converted into a 1D array by scanning the image in a

"snake-like" manner, where the coefficients are read row

by row from left to right in odd rows and from right to left

in even rows. The resulting 1D array (1D DWT

coefficients) serves as a compressed representation of the

2D matrix, while still retaining most of the important

information.

This 1D array is then used to create a matched filter bank,

which consisted of a set of Gabor filters oriented at

different angles. The filters were applied to the 1D DWT

coefficients, and the resulting filtered images were

flattened into 1D arrays.

The idea behind using the DWT and Gabor filters was to

extract features from the input image that would be useful

for distinguishing between the different classes.

3) Using K- means clustering:- Next, k-means

clustering was applied to each flattened filtered image. The

number of clusters was set to 2, which means that each

pixel in the filtered image was assigned to one of two

clusters. This process produced a set of 1D arrays

containing the labels for each pixel in the filtered image.

By using the k-means clustering algorithm, the features

were reduced to a set of discrete labels that could be used

as input to a classification model. This approach helps to

improve the accuracy and efficiency of our machine

learning model.

https://doi.org/10.46335/IJIES.2023.8.4.1 e-ISSN: 2456-3463

Vol. 8 , No. 4, 2023, PP. 1-7

International Journal of Innovations in Engineering and Science, www.ijies.net

4

4) Model training: Finally, the labels for each pixel

in each filtered image were concatenated into a single 1D

array, which was then used as the input along with class

labels corresponding to the input data to train the SVM.

5) Results: The accuracy of the SVM classifier is

evaluated using the ‘accuracy_score’ function from the

scikit-learn library. The accuracy of the model is found to

be 0.966 i.e approximately 96%, indicating that the model

performs well in predicting whether the eye is affected or

not.

B. CNN Implementation:

Following are the steps we implemented for CNN

implementation:

1) Data Collection:- We used a labeled data set

that was freely available on Kaggle. It has 5590 images out

of which 1928 are testing images and 3662 are training

images. The total dataset size is 10.22GB. The data set also

has a CSV file which maps the images to the level of DR.

Training Dataset is Balanced.[1]

2) Data Preprocessing:- The data in the dataset

was already in the appropriate form for training. So we just

resized the images to 300 x 300 pixels.

3) Model Building:

a) Importing libraries and modules:- 1st we

imported all necessary libraries and modules like:

TensorFlow, Keras, Scikit learn toolkit, TFLearn, tqdm,

numpy, open-cv, os, random, matplotlib.

b) Loading the data:- Then we loaded the

training data. It took 4 5 mins to load the data as the size of

the data is huge. Then we split the data into training and

testing sets. We used 80% data for training and 20% for

testing.

c) Defining the model:- Then we define a

convolutional neural network (CNN) architecture using the

Keras API in TensorFlow.

Then firstly we created an input layer for the model with a

shape of (300, 300, 3), which indicates that each input

image is of size 300x300x3, where 3 represents the three

color channels - red, green, and blue.

Then we defined the convolutional layers, which extract

features from the input images. Each layer uses a 3x3

kernel to convolve over the input image and extract a set of

filters, which are then passed through the ‘Rectified Linear

Unit’ (ReLU) activation function which is a common

activation function used in neural networks, to introduce

non-linearity. Each convolutional layer is followed by a

max-pooling layer with a 2x2 window that reduces the

spatial size of the output and helps in preventing

overfitting.

The layers in this particular CNN are as follows:

1. The first convolutional layer applies 16 filters that

are each 3x3 in size. The activation function used is

the rectified linear unit (ReLU).

2. The output of the first convolutional layer is then

passed through a max-pooling layer with a 2x2

window. This reduces the spatial dimensions of the

output by a factor of 2.

3. The second convolutional layer applies 32 filters

that are each 3x3 in size. The output is again passed

through a max-pooling layer with a 2x2 window.

4. The third convolutional layer applies 64 filters that

are each 3x3 in size. The output is again passed

through a max-pooling layer with a 2x2 window.

5. The fourth convolutional layer applies 128 filters

that are each 3x3 in size. The output is again passed

through a max-pooling layer with a 2x2 window.

6. After the convolutional and pooling layers, the

output (feature map) is flattened to a 1-dimensional

tensor, which can then be passed through a fully

connected layer. The fully connected layer has 512

hidden units and uses the ReLU activation function.

7. The fully connected layer is created using the Dense

function, which specifies the number of units (512)

and the activation function (ReLU). This layer

applies a matrix multiplication operation to the

flattened tensor followed by the ReLU activation

function.

8. Finally, the output layer of the network has 5 nodes,

one for each class in the classification task. The

activation function used for the output layer is

‘Softmax’, which normalizes the output so that the

sum of the outputs is 1, and each output can be

interpreted as the probability of the input image

belonging to that particular class.[6]

The entire network is defined using the ‘Model’ function

that takes the input layer and output layer as arguments.

This model can then be trained on the training data and

evaluated on the testing data to perform the image

classification task.

https://doi.org/10.46335/IJIES.2023.8.4.1 e-ISSN: 2456-3463

Vol. 8 , No. 4, 2023, PP. 1-7

International Journal of Innovations in Engineering and Science, www.ijies.net

5

d) Compiling the model:- After building the

model, the next step is to compile it, which means

specifying the loss function, optimizer, and metrics to be

used during training.

In this case, the loss function is specified as

'sparse_categorical_crossentropy', which is a commonly

used loss function for multiclass classification problems.

The optimizer used is ‘Adaptive Moment Estimation’

(Adam), which is a popular stochastic gradient descent

optimizer that adjusts the learning rate adaptively. The

learning rate is set to 0.00005.[2]

Finally, the metric used to evaluate the performance of the

model during training is accuracy. This metric is used to

calculate the percentage of correctly classified images in

the training set.

e) Data preparation for training and

testing: Now after compiling the model the data is

prepared for the training and testing of the CNN model.

The input images and corresponding labels are separated

into training and testing sets.

The training data is represented by two lists, let’s say,

‘training_X’ and ‘training_Y’, where each element of the

list ‘training_X’ contains an image and each element of the

list ‘training_Y’ contains the corresponding label.

Similarly, the testing data is represented by two lists,

‘testing_X’ and ‘testing_Y.’

To prepare the data for training, the images are extracted

from the lists and converted to NumPy arrays using the

‘np.array()’ function. For the training set, the input images

are extracted from the training_X list using list

comprehension and stored in, let’s say, X_train. Similarly,

the labels are extracted from the training_Y list and stored

in Y_train.

For the testing set, the input images are extracted from the

testing_X list using list comprehension and stored in, let’s

say, ‘X_test’. Similarly, the labels are extracted from the

testing_Y list and stored in ‘Y_test.’

f) Training the data: Now using this prepared

data the model is trained on the training dataset X_train

and Y_train and the performance of the model is evaluated

on the testing dataset X_test and Y_test.

For this ‘model.fit()’ method of the Sequential class in

‘Keras’ that train the model for a fixed number of epochs

(iterations on a dataset) is used.

Here are the arguments passed to the model.fit():

1. X_train: This is the training input data. It is a

NumPy array of shape (2930, 300, 300, 3), where

2930 is the number of training samples, 300 is the

width and height of each image, and 3 is the number

of color channels (RGB).

2. Y_train: This is the training target data. It is a

NumPy array of shape (2930,), where 2930 is the

number of training samples.

3. batch_size: This is the number of samples that will

be used in each training batch. In this case, 64

samples will be used in each batch. Basically, batch

size refers to the number of training samples that

are propagated through a neural network in a single

forward/backward pass.

4. epochs: This is the number of times the model will

be trained on the entire training dataset. In this case,

the model will be trained for 10 epochs. One epoch

consists of one or more batches, where each batch is

a subset of the training dataset.

5. verbose: This determines the amount of information

printed during training. A value of 1 means that

progress bars will be displayed.

6. Validation data: This is the data on which we

evaluate the loss and any model metrics at the end

of each epoch. In this case, X_test and Y_test are

used for validation.

4) Results &Model Evaluation: After this, the

next task is evaluating the performance of the trained

model on the testing dataset. The ‘model.evaluate’ method

is used to calculate the loss and accuracy of the model on

the testing dataset. The goal of training a machine learning

model is to minimize the loss and maximize the accuracy.

The method takes the testing dataset X_test and Y_test as

input and returns the values of loss and accuracy on this

dataset.

The test accuracy percentage was found to be

approximately 93% and the test loss percentage was found

to be approximately 18%.

5) Visualization:- Now we plot the training and

validation accuracy and loss of the model during the

training process.

First, the code extracts the training and validation

accuracy, loss, and number of epochs from the ‘Model_fit’

https://doi.org/10.46335/IJIES.2023.8.4.1 e-ISSN: 2456-3463

Vol. 8 , No. 4, 2023, PP. 1-7

International Journal of Innovations in Engineering and Science, www.ijies.net

6

method’s ‘history’ attribute.

Then, the code creates two subplots for accuracy and loss

separately. In the first subplot, the training accuracy and

validation accuracy are plotted against the number of

epochs. The green line represents the training accuracy,

and the blue line represents the validation accuracy.

 In the second subplot, the training loss and validation loss

are plotted against the number of epochs. Again, the green

line represents the training loss, and the blue line

represents the validation loss.

Finally, the code displays the two plots with a legend and a

title. These plots give us an idea of how well the model is

performing on the training and validation data and help us

to diagnose potential issues such as overfitting or

underfitting.

Fig. 1. The training and validation accuracy plotted against

the number of epochs.

Fig. 2. The training and validation loss plotted against the

number of epochs.

So, this is how we implemented CNN for our project.

V. Comparative Study:-

A. Accuracy:

CNN is found to achieve higher accuracy compared to

SVM for DR detection. CNN can learn hierarchical

representations of the input data and extract complex

features, leading to high accuracy in detecting DR from

retinal fundus images. SVM, on the other hand, relies on

handcrafted features and does not perform as well as CNN.

B. Dataset size:

CNN requires large datasets for training and optimization,

while SVM can perform well with smaller datasets. With

the availability of large public datasets like Messidor and

Kaggle, CNN can be trained effectively for DR detection.

However, SVM can be a good choice when only a limited

amount of labeled data is available.

C. Preprocessing:

Preprocessing techniques such as image normalization and

feature extraction are important for effective DR detection.

CNN can learn feature representations from the raw input

data, while SVM relies on handcrafted features extracted

from the preprocessed images. Therefore, CNN can be

more effective in detecting DR from retinal fundus images

with complex features.

D. Computational complexity:

CNN is computationally more complex than SVM and

they require significant computational resources for

training and optimization. SVM, on the other hand, is

computationally efficient and can be trained on relatively

modest hardware.

E. Interpretability:

SVM is more interpretable than CNN since they rely on

handcrafted features that can be easily understood. CNN,

on the other hand, learns complex feature representations

that may be difficult to interpret.

In summary, CNN is found to achieve higher accuracy

compared to SVM for DR detection. However, SVM can

be a good choice when only a limited amount of labeled

data is available, or when a computationally efficient

algorithm is required. Ultimately, the choice of algorithm

for DR detection depends on the specific requirements of

the application and the available resources.

VI. Conclusions:

The results showed that the CNN model outperformed the

SVM model. Therefore, it can be concluded that using

CNN for diabetic retinopathy detection is a promising

approach. However, more research is required to further

optimize the CNN model and to explore other deep

learning techniques for this purpose. Overall, this study

provides valuable insights for improving the accuracy and

efficiency of diabetic retinopathy detection using deep

learning methods.

https://doi.org/10.46335/IJIES.2023.8.4.1 e-ISSN: 2456-3463

Vol. 8 , No. 4, 2023, PP. 1-7

International Journal of Innovations in Engineering and Science, www.ijies.net

7

VII. FUTURE WORK

After carrying out this project work, the following

recommendations were made by our guide and other

faculties, based on the limitations encountered during the

implementation:-

1. Research can be extended to further optimize the

CNN model and explore other deep learning

techniques for this purpose.

2. More precise and customized reports can be made

as per the doctor’s need.

3. This model then can be commercialized.

ACKNOWLEDGMENT

We hereby express our sincere gratitude to our professor

from the Department of Information Technology, Dr.

Roopali Lolage for guiding us throughout this project

work. We are heartily thankful for her valuable guidance.

REFERENCES

[1] Mateen, Muhammad; Wen, Junhao; Hassan, Mehdi;

Nasrullah, Nasrullah; Sun, Song; Hayat, Shaukat (2020).

Automatic Detection of Diabetic Retinopathy: A Review on

Datasets, Methods and Evaluation Metrics. IEEE Access,

Volume 8, pages: 48784 - 48811, Issue 11, March 2020.

[2] Zhixiang Qian, Chenjian Wu, Hong Chen, Minxin Chen,

“Diabetic Retinopathy Grading Using Attention based

Convolution Neural Network”,2021 IEEE 5th Advanced

Information Technology, Electronic and Automation Control

Conference (IAEAC) |978-1-72818028-1/20/$31.00 ©2021

IEEE | DOI: 10.1109/IAEAC508 56.2021.9390963.

[3] Shital N. Firke, Ranjan Bala Jain, “Convolutional Neural

Network for Diabetic Retinopathy Detection”,2021

International Conference on Artificial Intelligence and Smart

Systems (ICAIS) | 978-1-7281-9537-7/20/$31.00 ©2021

IEEE |DOI:10.1109/ICAIS50930.2021.9395796.

[4] Prof. Ketki C. Pathak, Riddhi B. Shah, Reshma R. Tharakan,

Bhavya N. Patel, Dhruvi C. Jariwala,” Diabetic Retinopathy

Diagnosis and Categorization using Deep Learning - A

Review”, Proceedings of the Fifth International Conference

on Intelligent Computing and Control Systems (ICICCS

2021) IEEE Xplore Part Number: CFP21K74-ART; ISBN:

978-0-7381-1327-2.

[5] K. Shankar1, Yizhuo Zhang2, Yiwei Liu2, Ling Wu2, and Chi-

Hua Chen2, Senior Member, IEEE, “Hyperparameter Tuning

Deep Learning for Diabetic Retinopathy Fundus Image

Classification ”, DOI 10.1109/ACCESS.2020.3005152, IEEE

Access.

[6] Nagaraj G, Sumanth Simha C, Harish Chandra G R, Dr

Indiramma M, Professor,” Deep Learning Framework for

Diabetic Retinopathy Diagnosis”, Third International

Conference on Computing Methodologies and

Communication (ICCMC 2019) IEEE Xplore Part Number:

CFP19K25-ART; ISBN: 978-1-5386-7808-4.

[7] Mahendran Gandhi, Dr. R. Dhanasekaran,” Diagnosis of

Diabetic Retinopathy Using Morphological Process and SVM

Classifier”, International conference on Communication and

Signal Processing, April 3-5, 2013, India, 978-1-4673-4866-

9/13/$31.00 ©2013 IEEE.

