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Abstract— Diabetic retinopathy is a major problem 

worldwide and many people are losing their vision 

because of it. The disease gets severe if it is not treated 

properly at its early stages. In this disease, the retinal 

blood vessel gets damaged due to high blood sugar levels 

which eventually blocks the light that passes through the 

optical nerves, making the patient with Diabetic 

Retinopathy blind. Diabetic Retinopathy is detected using 

manual screening, but this requires a skilled 

ophthalmologist which may not be available everywhere 

and thus diagnosis takes a lot of time. Therefore, we 

decided to build a deep learning model using which we 

will be able to detect multiple stages of severity for 

Diabetic Retinopathy. So, we studied and built widely-

discussed models - Support Vector Machine (SVM) and 

Convolutional Neural Network (CNN) - and conducted a 

comparative study to determine the most suitable model. 

We found that CNN outperformed SVM in terms of 

accuracy and efficiency, making it the most suitable model 

for detecting multiple stages of severity for Diabetic 

Retinopathy. Thus, this automatic diabetic retinopathy 

detection model built using CNN can replace manual 

screening, enabling ophthalmologists to focus on patient 

care. Additionally, this model can assist inexperienced 

ophthalmologists in accurately diagnosing diabetic 

retinopathy. 

Keywords— Diabetic Retinopathy, Blind, Retina, Deep 

Learning, Ophthalmologist, Manual Screening 

I. INTRODUCTION 

According to International Diabetes Federation’s report, 

in 2021 approximately 537 million adults (20-79 years) 

have diabetes. The total number of people having diabetes 

is projected to rise to 643 million by 2030 and 783 million 

by 2045. The International Diabetes Federation (IDF) 

reported that diabetes caused 6.7 million deaths in 2021. In  

India, 1 in 12 adults, or more than 74 million people living 

are diabetes patients. So, we are the second highest in the 

world after China, which has 141 million diabetes patients. 

Diabetes is caused because of the excess growth of glucose 

in the blood. A person affected with diabetes is vulnerable 

to kidney failure, bleeding teeth, lower limb confiscation, 

nerve failures, and so on. Having diabetics for a long time 

causes severe blood vessel damage. Due to this, neurons 

present in the brain get damaged and cause Diabetic 

Retinopathy (DR) which results in retinal infection and 

eventually vision loss.  

This is Evidence that DR is a major issue nowadays. This 

motivated us to build a model which will help to reduce the 

severity of this problem. 

There are various techniques for detecting the affected eye, 

some of them are slit-lamp biomicroscope, optical 

coherence tomography (OCT), and fundus images.[5] 

Symptoms like venous beading, microaneurysms, 

hemorrhage, neovascularization, etc. are used to diagnose 

DR [1]. 

DR is classified into non-proliferative DR (NPDR) and 

Proliferative DR (PDR). Based on the severity it is further 

classified as follows: 

A. No apparent retinopathy: In this stage, there are no 

signs of diabetic retinopathy in the eye. 

B. Mild non-proliferative retinopathy: In this stage, there 

are small areas of balloon-like swelling in the retina’s 

blood vessels. Microaneurysms, Venous beading, 

Cotton wool spots may be visible.  

C. Moderate non-proliferative retinopathy: In this stage, 

some blood vessels that feed the retina are blocked.  
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Hard exudates and Haemorrhages may be visible. 

D. Severe non-proliferative retinopathy: In this stage, 

many blood vessels that feed the retina are blocked, 

leading to the growth of new blood vessels. All the 

above mentioned signs become more pronounced and 

Ischemia may be visible. 

E. Proliferative diabetic retinopathy:  In this stage, the 

new blood vessels are fragile and can bleed into the 

jelly-like substance in the center of the eye, leading to 

severe vision loss and even blindness. 

Neovascularization, Scarring in the retina due to blood 

vessel damage, Severe haemorrhages, Macular edema, 

Retinal detachment, Vitreous haemorrhage, Optic 

neuropathy may be visible.[4] 

In many rural areas, there are very few or no experienced 

ophthalmologists and this delays the diagnosis as well as 

treatment.[6] 

Thus, we decided to build a deep-learning model for 

diagnosing DR using fundus images. 

II. PROPOSED WORK 

In this study, we aim to detect diabetic retinopathy using 

deep learning techniques on fundus images. We first 

explored the use of SVM (Support Vector Machine), which 

has been widely used for this purpose.[1] However, after 

reviewing several recent research papers [3,2], we decided 

to implement CNN (Convolutional Neural Network) as 
well, as it is considered to be a better option for this task. 

In this proposed work, we plan to train and compare the 

performance of both SVM and CNN models on a large 

dataset of fundus images. The results of our comparative 

study will provide insights into the effectiveness of these 

models for diabetic retinopathy detection. 

III. STUDYING DIFFERENT MODELS 

There are many models used for Diabetic Retinopathy 

detection but the most discussed among them were SVM 

and CNN. 

A.  Support Vector Machine 

Diabetic retinopathy is a condition that affects the blood 

vessels in the retina and can cause vision loss if not 

detected and treated early. Support vector machine (SVM) 

is a type of supervised machine learning algorithm that can 

be used for diabetic retinopathy detection. 

The SVM algorithm works by finding a hyperplane in the 

feature space that separates the different classes of data. 

In the case of diabetic retinopathy detection, the features 

could be extracted from retinal fundus images, such as the 

presence of microaneurysms, hemorrhages, exudates, and 

other lesions. 

Here are the steps involved in using SVM for diabetic 

retinopathy detection: 

1) Data Collection: Collect a dataset of retinal 

fundus images that are labeled for diabetic retinopathy. 

This dataset should include images from both healthy and 

diabetic patients. 

2) Preprocessing: Preprocess the images to remove 

noise and standardize the image size and orientation. 

Image normalization techniques can also be used to 

improve the accuracy of the SVM algorithm. 

3) Training: Split the dataset into a training set and a 

validation set. Train the SVM algorithm on the training set 

using the extracted features and their corresponding labels. 

4) Testing: Test the SVM algorithm on the validation 

set and measure its performance using evaluation metrics 

such as accuracy, precision, recall, and F1 score. 

5) Deployment: Deploy the trained SVM algorithm 

on new retinal fundus images to detect diabetic 

retinopathy.[7] 

 

SVM is a popular machine learning algorithm for diabetic 

retinopathy detection because it can handle high-

dimensional data and is robust to overfitting. However, it 

requires careful feature selection and hyperparameter 

tuning to achieve high accuracy. 

B. Convolutional Neural Network:  

Convolutional Neural Networks (CNN) are a type of deep 

learning algorithm that can be used for diabetic retinopathy 

detection. 

The CNN algorithm works by learning hierarchical 

representations of the input data through convolutional and 

pooling layers. In the case of diabetic retinopathy 

detection, the input data could be retinal fundus images, 

and the CNN could learn to detect the presence of 

microaneurysms, hemorrhages, exudates, and other lesions. 

Here are the steps involved in using CNN for diabetic 

retinopathy detection: 

1) Data Collection: Collect a dataset of retinal 

fundus images that are labeled for diabetic retinopathy. 

This dataset should include images from both healthy and 

diabetic patients. 
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2) Preprocessing: Preprocess the images to remove 

noise and standardize the image size and orientation. It 

also includes applying different filters to improve the 

quality of images. One well-known method of 

preprocessing is  Ben Graham's pre-processing method. It 

includes resizing the image, Green Channel Extraction, 

Gaussian Smoothing, Contrast Limited Adaptive 

Histogram Equalization (CLAHE), and Grey Scaling. It 

improves the performance of the model. 

3) Training: Split the dataset into a training set, 

validation set, and test set. Train the CNN algorithm on the 

training set using the preprocessed images and their 

corresponding labels. 

4) Validation: Validate the CNN algorithm on the 

validation set and measure its performance using 

evaluation metrics such as accuracy, precision, recall, and 

F1 score. 

5) Optimization: Tune the hyperparameters of the 

CNN algorithm, such as the number of layers, the size of 

the filters, the learning rate, and the regularization, to 

improve its performance on the validation and test sets. 

6) Testing: Test the CNN algorithm on the test set 

and measure its performance using the same evaluation 

metrics used during validation. 

7) Deployment: Deploy the trained CNN algorithm 

on new retinal fundus images to detect diabetic 

retinopathy. 

CNN is a powerful deep learning algorithm for diabetic 

retinopathy detection because it can learn complex features 

from the input data and achieve high accuracy with large 

datasets. However, it requires a large amount of labeled 

data and significant computational resources for training 

and optimization. 

IV. Implementation  

A. SVM Implementation: 

Following are the SVM implementation steps : 

1) Importing Data:- We used a  dataset consisting 

of 89 images with corresponding labels indicating affected 

and unaffected retina. The dataset is divided into two 

classes where 1 denotes the affected eye, and 0 denotes the 

unaffected eye.  

2) Pre- Processing:- After loading the images we 

convert them to grayscale using the OpenCV library. After 

grayscale conversion, adaptive histogram equalization is 

applied to the image to enhance its contrast. The resulting 

image is then stored as a flattened 1D numpy array. 

 

This process is repeated for all 90 images in the dataset. 

Then the preprocessed grayscale images are loaded and 

converted to 2D format from their flattened form.  

After that, a Discrete Wavelet Transform (DWT) is 

performed on each image using the ‘Haar wavelet’ which 

is one of the simplest and most commonly used wavelets.  

Wavelet analysis is a powerful signal processing technique 

that allows a signal or image to be decomposed into a set 

of basis functions called wavelets. These basis functions 

are used to represent the original signal or image in a 

compressed form, which can be used for various 

applications such as image compression, noise reduction, 

and feature extraction. 

The Haar wavelet is a type of wavelet function that has a 

simple step-like shape, making it easy to implement and 

understand. 

 The DWT is performed on the 2D preprocessed image. 

The 2D DWT coefficients obtained from the DWT are then 

converted into a 1D array by scanning the image in a 

"snake-like" manner, where the coefficients are read row 

by row from left to right in odd rows and from right to left 

in even rows. The resulting 1D array (1D DWT 

coefficients) serves as a compressed representation of the 

2D matrix, while still retaining most of the important 

information. 

This 1D array is then used to create a matched filter bank, 

which consisted of a set of Gabor filters oriented at 

different angles. The filters were applied to the 1D DWT 

coefficients, and the resulting filtered images were 

flattened into 1D arrays. 

The idea behind using the DWT and Gabor filters was to 

extract features from the input image that would be useful 

for distinguishing between the different classes. 

3) Using K- means clustering:- Next, k-means 

clustering was applied to each flattened filtered image. The 

number of clusters was set to 2, which means that each 

pixel in the filtered image was assigned to one of two 

clusters. This process produced a set of 1D arrays 

containing the labels for each pixel in the filtered image. 

By using the k-means clustering algorithm, the features 

were reduced to a set of discrete labels that could be used 

as input to a classification model. This approach helps to 

improve the accuracy and efficiency of our machine 

learning model. 
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4) Model training: Finally, the labels for each pixel 

in each filtered image were concatenated into a single 1D 

array, which was then used as the input along with class 

labels corresponding to the input data to train the SVM.  

5) Results: The accuracy of the SVM classifier is 

evaluated using the ‘accuracy_score’ function from the 

scikit-learn library. The accuracy of the model is found to 

be 0.966 i.e approximately 96%, indicating that the model 

performs well in predicting whether the eye is affected or 

not. 

B. CNN Implementation: 

Following are the steps we implemented for CNN 

implementation: 

1) Data Collection:- We used a labeled data set 

that was freely available on Kaggle. It has 5590 images out 

of which 1928 are testing images and 3662 are training 

images. The total dataset size is 10.22GB. The data set also 

has a CSV file which maps the images to the level of DR. 

Training Dataset is Balanced.[1]  

2) Data Preprocessing:- The data in the dataset 

was already in the appropriate form for training. So we just 

resized the images to 300 x 300 pixels. 

3) Model Building: 

a) Importing libraries and modules:- 1st we 

imported all necessary libraries and modules like: 

TensorFlow, Keras, Scikit learn toolkit, TFLearn, tqdm, 

numpy, open-cv, os, random, matplotlib. 

b) Loading the data:- Then we loaded the 

training data. It took 4 5 mins to load the data as the size of 

the data is huge. Then we split the data into training and 

testing sets. We used  80% data for training and 20% for 

testing. 

c)  Defining the model:- Then we define a 

convolutional neural network (CNN) architecture using the 

Keras API in TensorFlow. 

Then firstly we created an input layer for the model with a 

shape of (300, 300, 3), which indicates that each input 

image is of size 300x300x3, where 3 represents the three 

color channels - red, green, and blue. 

Then we defined the convolutional layers, which extract 

features from the input images. Each layer uses a 3x3 

kernel to convolve over the input image and extract a set of 

filters, which are then passed through the ‘Rectified Linear 

Unit’ (ReLU)  activation function which is a common 

activation function used in neural networks, to introduce 

non-linearity. Each convolutional layer is followed by a 

max-pooling layer with a 2x2 window that reduces the 

spatial size of the output and helps in preventing 

overfitting. 

The layers in this particular CNN are as follows: 

1. The first convolutional layer applies 16 filters that 

are each 3x3 in size. The activation function used is 

the rectified linear unit (ReLU). 

2. The output of the first convolutional layer is then 

passed through a max-pooling layer with a 2x2 

window. This reduces the spatial dimensions of the 

output by a factor of 2. 

3. The second convolutional layer applies 32 filters 

that are each 3x3 in size. The output is again passed 

through a max-pooling layer with a 2x2 window. 

4. The third convolutional layer applies 64 filters that 

are each 3x3 in size. The output is again passed 

through a max-pooling layer with a 2x2 window. 

5. The fourth convolutional layer applies 128 filters 

that are each 3x3 in size. The output is again passed 

through a max-pooling layer with a 2x2 window. 

6. After the convolutional and pooling layers, the 

output (feature map) is flattened to a 1-dimensional 

tensor, which can then be passed through a fully 

connected layer. The fully connected layer has 512 

hidden units and uses the ReLU activation function. 

7. The fully connected layer is created using the Dense 

function, which specifies the number of units (512) 

and the activation function (ReLU). This layer 

applies a matrix multiplication operation to the 

flattened tensor followed by the ReLU activation 

function. 

8. Finally, the output layer of the network has 5 nodes, 

one for each class in the classification task. The 

activation function used for the output layer is 

‘Softmax’, which normalizes the output so that the 

sum of the outputs is 1, and each output can be 

interpreted as the probability of the input image 

belonging to that particular class.[6] 

The entire network is defined using the ‘Model’ function 

that takes the input layer and output layer as arguments. 

This model can then be trained on the training data and 

evaluated on the testing data to perform the image 

classification task. 
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d) Compiling the model:- After building the 

model, the next step is to compile it, which means 

specifying the loss function, optimizer, and metrics to be 

used during training. 

In this case, the loss function is specified as 

'sparse_categorical_crossentropy', which is a commonly 

used loss function for multiclass classification problems. 

The optimizer used is ‘Adaptive Moment Estimation’ 

(Adam), which is a popular stochastic gradient descent 

optimizer that adjusts the learning rate adaptively. The 

learning rate is set to 0.00005.[2] 

Finally, the metric used to evaluate the performance of the 

model during training is accuracy. This metric is used to 

calculate the percentage of correctly classified images in 

the training set. 

e) Data preparation for training and 

testing: Now after compiling the model the data is 

prepared for the training and testing of the CNN model. 

The input images and corresponding labels are separated 

into training and testing sets. 

 

The training data is represented by two lists, let’s say, 

‘training_X’ and ‘training_Y’, where each element of the 

list ‘training_X’ contains an image and each element of the 

list ‘training_Y’ contains the corresponding label. 

Similarly, the testing data is represented by two lists, 

‘testing_X’ and ‘testing_Y.’ 

To prepare the data for training, the images are extracted 

from the lists and converted to NumPy arrays using the 

‘np.array()’ function. For the training set, the input images 

are extracted from the training_X list using list 

comprehension and stored in, let’s say,  X_train. Similarly, 

the labels are extracted from the training_Y list and stored 

in Y_train. 

For the testing set, the input images are extracted from the 

testing_X list using list comprehension and stored in, let’s 

say, ‘X_test’. Similarly, the labels are extracted from the 

testing_Y list and stored in ‘Y_test.’ 

f) Training the data: Now using this prepared 

data the model is trained on the training dataset X_train 

and Y_train and the performance of the model is evaluated 

on the testing dataset X_test and Y_test. 

For this ‘model.fit()’ method of the Sequential class in 

‘Keras’ that train the model for a fixed number of epochs 

(iterations on a dataset) is used.  

Here are the arguments passed to the model.fit(): 

1. X_train: This is the training input data. It is a 

NumPy array of shape (2930, 300, 300, 3), where 

2930 is the number of training samples, 300 is the 

width and height of each image, and 3 is the number 

of color channels (RGB). 

2. Y_train: This is the training target data. It is a 

NumPy array of shape (2930,), where 2930 is the 

number of training samples. 

3. batch_size: This is the number of samples that will 

be used in each training batch. In this case, 64 

samples will be used in each batch. Basically, batch 

size refers to the number of training samples that 

are propagated through a neural network in a single 

forward/backward pass. 

4. epochs: This is the number of times the model will 

be trained on the entire training dataset. In this case, 

the model will be trained for 10 epochs. One epoch 

consists of one or more batches, where each batch is 

a subset of the training dataset. 

5. verbose: This determines the amount of information 

printed during training. A value of 1 means that 

progress bars will be displayed. 

6. Validation data: This is the data on which we 

evaluate the loss and any model metrics at the end 

of each epoch. In this case, X_test and Y_test are 

used for validation.  

4) Results &Model Evaluation: After this, the 

next task is evaluating the performance of the trained 

model on the testing dataset. The ‘model.evaluate’ method 

is used to calculate the loss and accuracy of the model on 

the testing dataset. The goal of training a machine learning 

model is to minimize the loss and maximize the accuracy. 

The method takes the testing dataset X_test and Y_test as 

input and returns the values of loss and accuracy on this 

dataset. 

The test accuracy percentage was found to be 

approximately 93% and the test loss percentage was found 

to be approximately 18%. 

5) Visualization:- Now we plot the training and 

validation accuracy and loss of the model during the 

training process. 

First, the code extracts the training and validation 

accuracy, loss, and number of epochs from the ‘Model_fit’ 
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method’s ‘history’ attribute. 

Then, the code creates two subplots for accuracy and loss 

separately. In the first subplot, the training accuracy and 

validation accuracy are plotted against the number of 

epochs. The green line represents the training accuracy, 

and the blue line represents the validation accuracy. 

 In the second subplot, the training loss and validation loss 

are plotted against the number of epochs. Again, the green 

line represents the training loss, and the blue line 

represents the validation loss. 

Finally, the code displays the two plots with a legend and a 

title. These plots give us an idea of how well the model is 

performing on the training and validation data and help us 

to diagnose potential issues such as overfitting or 

underfitting. 

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The training and validation accuracy plotted against 

the number of epochs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The training and validation loss plotted against the 

number of epochs. 

So, this is how we implemented CNN for our project. 

V. Comparative Study:-   

A. Accuracy: 

CNN is found to achieve higher accuracy compared to 

SVM for DR detection. CNN can learn hierarchical 

representations of the input data and extract complex 

features, leading to high accuracy in detecting DR from 

retinal fundus images. SVM, on the other hand, relies on 

handcrafted features and does not perform as well as CNN. 

B. Dataset size:  

CNN requires large datasets for training and optimization, 

while SVM can perform well with smaller datasets. With 

the availability of large public datasets like Messidor and 

Kaggle, CNN can be trained effectively for DR detection. 

However, SVM can be a good choice when only a limited 

amount of labeled data is available. 

C. Preprocessing:  

Preprocessing techniques such as image normalization and 

feature extraction are important for effective DR detection. 

CNN can learn feature representations from the raw input 

data, while SVM relies on handcrafted features extracted 

from the preprocessed images. Therefore, CNN can be 

more effective in detecting DR from retinal fundus images 

with complex features. 

D. Computational complexity: 

CNN is computationally more complex than SVM and 

they require significant computational resources for 

training and optimization. SVM, on the other hand, is 

computationally efficient and can be trained on relatively 

modest hardware. 

E. Interpretability:  

SVM is more interpretable than CNN since they rely on 

handcrafted features that can be easily understood. CNN, 

on the other hand, learns complex feature representations 

that may be difficult to interpret. 

In summary, CNN is found to achieve higher accuracy 

compared to SVM for DR detection. However, SVM can 

be a good choice when only a limited amount of labeled 

data is available, or when a computationally efficient 

algorithm is required. Ultimately, the choice of algorithm 

for DR detection depends on the specific requirements of 

the application and the available resources. 

VI. Conclusions:   

The results showed that the CNN model outperformed the 

SVM model. Therefore, it can be concluded that using 

CNN for diabetic retinopathy detection is a promising 

approach. However, more research is required to further 

optimize the CNN model and to explore other deep 

learning techniques for this purpose. Overall, this study 

provides valuable insights for improving the accuracy and 

efficiency of diabetic retinopathy detection using deep 

learning methods. 

 

 



https://doi.org/10.46335/IJIES.2023.8.4.1                                                                                              e-ISSN: 2456-3463 

Vol. 8 , No. 4, 2023, PP. 1-7        
 

International Journal of Innovations in Engineering and Science,   www.ijies.net 
 

7 
 

VII. FUTURE WORK 

After carrying out this project work, the following 

recommendations were made by our guide and other 

faculties, based on the limitations encountered during the 

implementation:- 

1. Research can be extended to further optimize the 

CNN model and explore other deep learning 

techniques for this purpose. 

2. More precise and customized reports can be made 

as per the doctor’s need.  

3. This model then can be commercialized. 
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