A Survey on Jamming Attacks in Wireless Sensor Networks

Ilavarasan S

Assistant Professor/IT, Saveetha Engineering College, Chennai-India, ilavarasan.sargunan@gmail.com

ABSTRACT-Wireless sensor network refers to a group of spatially dispersed and dedicated sensors for monitoring and recording the physical conditions of the environment and organizing the collected data at a central location. In Wireless Sensor Networks, nodes collectively collaborate to sense the environment and inform the base station. Wireless sensor network consists of large number of low-cost, resource-constrained sensor nodes. These networks are easily prone to security attacks. There are many possible attacks on sensor network such as selective forwarding, jamming, sinkhole, wormhole, Sybil and hello flood attacks. Jamming is one of the severe types of attack which interferes with the radio frequencies used by network nodes. Jamming style Denial-of-Service attacks is the transmission of radio signals that disrupt communications by decreasing the signal to noise ratio. These attacks can easily be launched by jammer through, either bypassing MAC-layer protocols or emitting a radio signal targeted at blocking a particular channel. The jamming attack is one of the most critical security issues in wireless networks, which disseminates out sufficient adversarial signals into the radio frequencies used by normal sensor nodes, without following any legitimate protocols. Since the jammer interferes with radio reception by producing noise, it could decrease the probability of successful broadcasting in the wireless communication. The jammers do not need to explore lots of internal information of the network components, so this light weight attack is easy to launch and favoured by attackers. Furthermore, in reactive jamming attacks the jammers keep idle until being triggered by messages disseminated within their transmission ranges, thereby further reducing the jammers' operation overhead and making it hard to detect, thus this intelligent attack can be utilized by malicious users in more real-world scenarios

Keywords- Wireless sensor network, Jamming, Denialof-Service attacks.

INTRODUCTION

 \mathbf{W} ireless Sensor Networks (WSNs) are used in many applications which often include the monitoring and recording of sensitive information (e.g. battlefield awareness, secure area monitoring and target detection). Recently the high drop in the prices of CMOS cameras and microphones has given rise to the development of a special class of WSNs, that of Wireless Multimedia Sensor Networks (WMSNs).WMSNs allow the retrieval of video and audio streams, still images, and scalar sensor data from deployed nodes. Hence, they can be efficiently used in various security applications such as surveillance systems for monitoring of secure areas, patients, children, etc. In these applications, QoS requirements rise, since in such systems even a temporal disruption of the proper data streaming may lead to disastrous results. It is therefore evident that the critical importance of WSNs raises major security concerns. Jamming is defined as the act of intentionally directing electromagnetic energy towards a communication system to disrupt or prevent signal transmission. In the context of WSNs, jamming is the type of attack which interferes with the radio frequencies used by network nodes . In the event that an attacker uses a rather powerful jamming source, disruptions of WSNs' proper function are likely to occur. As a result, the use of countermeasures against jamming in WSN environments is of immense importance, especially taking into account that WSNs suffer from many constraints, including low computation capability, limited memory and energy resources, susceptibility to physical capture and the use of insecure wireless communication channels. Jamming attacks may be viewed as a special case of Denial of Service (DoS) attacks. Wood and Stankovic define DoS attack as "any event that diminishes or eliminates a network's capacity to perform its expected function". Typically, DoS prevents or inhibits the normal use or management of Communications through flooding a network with 'useless' information. In a jamming attack the Radio Frequency (RF) signal emitted by the jammer corresponds to the 'useless' information received by all sensor nodes. This signal can be white noise or any signal that resembles network traffic. The main objective of this article is to provide a general overview of the critical issue of jamming in WSNs and cover all the relevant work, providing the interested researcher pointers for open research issues in this field.

JAMMING DEFINITION, HISTORY AND TECHNIQUES

Jamming is defined as the emission of radio signals aiming at disturbing the transceivers' operation . The main difference between jamming and radio frequency interference (RFI) is that the former is intentional and against a specific target while the latter is unintentional, as a result of nearby transmitters that transmit in the same or very close frequencies (for instance, the coexistence of multiple WSNs on the same area using the same frequency channel may result in RFI).

A. Brief History of Jamming

The first occasions of jamming attacks were recorded back in the beginning of the 20th century against military radio telegraphs. Germany and Russia were the first to engage in

jamming. The jamming signal most frequently consisted of co-channel characters. The first wartime jamming activities can be traced back to the World War II, when allied ground radio operators attempted to mislead pilots by giving false instructions in their own language (an example of deceptive jamming). These operators were known by the code name 'Raven' which soon became 'Crow'. The crow represents the universal sign of jamming ever since. Also during World War II the first jamming operations against radars (a new invention at that

time) have been reported. Jamming of foreign radio broadcast stations has been often

used during periods of tense international relations and wartime to prevent the listening of radio broadcasts from enemy countries. This type of jamming could be relative easy addressed by the stations with the change of transmitting frequency, adding of additional frequencies and by increasing transmission power.

B. Jamming Techniques

The key point in successful jamming attacks is Signal-to-Noise Ratio (SNR), SNR= Psignal/Pnoise, where P is the average power. Noise simply represents the undesirable accidental fluctuation of electromagnetic spectrum, collected by the antenna. Jamming can be considered effective if SNR< 1. Existing jamming methods are described below.

1) Spot Jamming: The most popular jamming method is the spot jamming wherein the attacker directs all its transmitting power on a single frequency that the target

uses with the same modulation and enough power to override the original signal. Spot jamming is usually very powerful, but since it jams a single frequency each time it may be easily avoided by changing to another frequency.

2) Sweep Jamming: In sweep jamming a jammer's full power shifts rapidly from one frequency to another. While this method of jamming has the advantage of being able to jam multiple frequencies in quick succession, it does not affect them all at the same time, and thus limits the effectiveness of this type of jamming. However, in a WSN environment, it is likely to cause considerable packet loss and retransmissions and, thereby, consume valuable energy resources.

3) Barrage Jamming: In barrage jamming a range of frequencies is jammed at the same time. Its main advantage is that it is able to jam multiple frequencies at once with enough power to decrease the SNR of the enemy receivers. However as the range of the jammed frequencies grows bigger the output power of the jamming is reduced proportionally.

4) Deceptive Jamming: Deceptive jamming can be applied in a single frequency or in a set of frequencies and is used when the adversary wishes not to reveal her existence. By flooding the WSN with fake data she can deceive the network's defensive mechanisms (if any) and complete her task without leaving any traces. Deceptive jamming is a very dangerous type of attack as it cannot be easily detected and has the potential to flood the PE with useless or fake data that will mislead the WSN' operator and occupy the available bandwidth used by legitimate nodes.

Impact Factor Value 4.046 e-Is International Journal of Innovations in Engineering and Science, Vol. 3, No.7, 2018 www.ijies.net

S.no	Journal	Problem	Technique	Solution	Merits	Demerits
	name					
1.	Jammy:a distributed and dynamic solution to selective jamming attacks in tdma wsn's	TDMA is used in wsn for pre- allocationg slots for sensor nodes.An adversary could attack a victim node by simply jamming its slots because each slot is used by the same node for a number of consecutive frames.	JAMMY,a distributed and dynamic solution for selective jamming	JAMMY changes the slot utilization at every super frame thus making it unpredictable for the adversary.	JAMMY allows multiple nodes to join the network in a limited number of superframes.	Jammy causes negligible energy overhead.
2.	Efficient jammed area mapping in wsn	Adversary emits constant high amplitude noises disrupting the communication among nodes.	Jammed area mapping protocol	 (i)Solution is collaborativel-y mapping the jammed region and avoiding traffic through the jammed area. (ii)This protocol detects jamming and notifies neighbours. 	The network lifetime increases while using the proposed enhanced J.A.M protocol due to reduced number of packet transmissions in mapping jammed area.	This protocol faces a broadcast storm problem inside the jammed area.
3.	Distributed secure estimation over wsn against random multichannel jamming attacks	Sensor's measurements are divided into ny components.The attacker randomly drops the channel if they are sucessfully jammed.	(i)Two level switching attack model (ii)A distributed attack model	Two level switching attack model to capture random attack strategies.Distribute d attack model to achieve consensus estimation for target tracking.	One of the most efficient algorithm which reduces computational compexity.	In the presence of a smart attacker, some random or more complicated attack policies may pose major difficulties for remote estimators.

Table 1- Benchmarks table on Jamming Networks

International Journal of Innovations in Engineering and Science, Vol. 3, No.7, 2018 www.ijies.net

	-			-	-	
4.	A trigger	Reactive jamming	An	First identify the set	This trigger	Cannot be
	identification	causes mass	application	of victim nodes by	identification	used for high
	service for	destruction to	layer real	investigationg	procedure is a	speed
	defending	legitimate sensor	time trigger	coressponding links'	lightweight	jammers.
	reactive	communication and	identificatio	PDR and RSS,then	service, which is	Main issue is
	jammers in	difficulty to be	n service	these victim nodes	prompt and	jammer
	wsn	disclosed and		are grouped into	reliable to	mobility.
		defended.		multiple testing	various network	
		Numerous attempts		teams.Once the	scenarios.	
		like receiver signal		group testing		
		strength,packet		schedule is made at		
		delivery ratio were		base station it is		
		used to control		routed to all victim		
		jamming attack but		nodes to identify		
		jammer nodes could		trigger or non-		
		not be detected.		trigger.		
5.	Mitigating	Probability of	Mpt-multi	Probability of	The problem of	The hardware
	the effect of	success and	packet	success in presence	infrastructure	and software
	jamming	throughput per	transmission	of jamming signals	environment is	implementaio
	signals in	mobile nodes can be	Mpr-multi	can be mitigated	solved by using	n of the
	wireless	reduced	packet	using mpt and mpr	these mpt and	combined mpt
	adhoc and	significantly if the	reception	capabilities.	mpr capabilities.	and mpr is
	sensor	network is attacked	_	By using mpr, the		done with
	networks	by jamming signals.		probability that a		high
				packet will be an		complexity
				authorized one is		due to the
				increased.		advancements
				By using mpr, the		in electronics.
				probability that no		
				other packet will		
				interfere in		
				increased.		
6.	Geomorphic	Divides the	Modified	Proposed method	One of the most	Does not map
	zonalisation	geographic extent of	Graham's	follows centralised	energy-efficient	the jammed
	of wsn based	wsn under attack of	scan for	approach where	and fastest-	area this
	on prevalent	jammer into	convex hull	mapping is done by	known mapping	method just
	jamming	different zones as	construction	base station through	systems.The	zonalises the
	attacks	per severity.Existing	(MGSCHC),	hull tracing using	system has no	entire area
		methods are	boundary	pre calculated	inherent	into desired
		vulnerable to	trace	jamming indices.	inaccuracies.	number of
		information warfare	algorithm			zones.
		as they require to	(BTA)			
		communicate even				
		under a jamming				
		attack.				

International Journal of Innovations in Engineering and Science,	Vol. 3, No	o.7, 2018
www.ijies.net		

7.	Optimal	A static wireless	Optimal	Frequency hopping	Provides optimal	The route
	decision rule	sensor network is	group	strategy uses takes	frequency to get	packet
	baesd ex-	affected by a	decision rule	into account the	maximum	delivery ratio
	ante	constant, static		individual node	throughput.	as well as the
	frequency	iammer.		decision and finally		network
	hopping for	Both the nodes in		makes decision for		packet
	jamming	the network and the		the welfare of		delivery ratio
	J. 8	iammer are capable		overall network.		are affected
		of switching				adversely by a
		frequencies.				signifi-
		1				cant extent.
8.	Optimal	The network	Optimal	For attack detection	The method	The detection
	jamming	defends itself by	detection	this model provides	provides	performance
	attack	computing the	test based on	decision based on	valuable insight	decreases
	strategies	channel access	the	the incurred	about the	because the
	and network	probability to	percentage	collisions with the	structure of the	mobile
	defense	minimize the	of incurred	nominal one.	jamming	attackers
	policies in	jamming detection	collisions.		problem and	move in and
	wsn	plus notification			demonstrate	out of the
		time.The jammer			sophisticated	range of the
		controls the			strategies for	observer.
		probability of			achieving	
		jamming in order to			desirable	
		cause more damage			performance.	
		to the network.				
9.	Information	WSN very suitable	Fuzzy	Jamming detection	Decision for	discriminating
	Warfare-	for hunting	Inference	is done by the base	jamming	edge and
	Worthy	jammers, i.e.,	System	station based on the	detection is taken	corner nodes
	Jamming	detecting, localizing		input values	by the nodes	from the rest
	Attack	and tracking the		received from the	themselves in the	and allotting
	Detection	jammers is a very		nodes. 1) the	existing methods	various
	Mechanism	costly and difficult		number of total	which is	allowances to
	for Wireless	task.		packets received	considered as not	them for loss
	Sensor			during a specified	feasible and here	of prospective
	Networks			time period 2) the	it is decided by	jammed or
	Using a			number of packets	the base station.	un-jammed
	Fuzzy			dropped during the		neighbors in
	Inference			period 3) the		our algorithm.
	System			received signal		
				strength (RSS).		

International Journal of Innovations in Engineering and Science, Vol. 3, No.7, 2018 www.ijies.net

10.	Reactive	To overcome the	group	By utilizing GT	carefully designs	Negligible
	Jamming	shortcoming in the	testing (GT)	theory, disk cover	a better routing	packet loss
	Attacks in	existing methods	theory	based grouping and	protocol by	
	Multi-Radio	existingi.e.	routing	clique based	switching these	
	Wireless	frequency hopping	protocol	clustering, the	nodes into only	
	Sensor	or channel	TNLT	proposed protocol	receivers to	
	Networks:	surfing, require		can accurately	avoid	
	An Efficient	excessive		identify the trigger	activating	
	Mitigating	computational		nodes among the	jammers	
	Measure by	capabilities on		victim	reduces	
	Identifying	wireless devices		nodes with low	computational	
	Trigger	which are serious		message and	overhead present	
	Nodes	side effects in		computational	in the previous	
		wireless sensor		complexity.	methods.	
		networks.				

CONCLUSION

This article reviewed the main aspects of wireless sensor network security against jamming attacks: vulnerabilities of today's WSNs, types of jammers and attacks, and effective of jamming attacks. It also classifies the research works that deal with jamming in WSNs based on highlighting their relevant positive aspects and shortcomings. Furthermore it highlights open research issues in the field of jamming in adoption and usage of WSN technologies in military and monitoring applications is expected to bring out the immense importance of this security issue.

REFERENCE

- A. D. Wood and J. A. Stankovic, "Denial of service in sensor networks", Computer, vol. 35,no. 10, pp.54-62, 2002.
- [2] Aristides Mpitziopoulos, Damianos Gavalas, Charalampos Konstantopoulos, and Grammati Pantziou, "A Survey on

Jamming Attacks and Countermeasures in WSNs", IEEE communications surveys & tutorials, vol. 11, no. 4, fourth quarter 2009

- [3] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "A survey on sensor networks," IEEE Commun. Mag., vol. 40, no. 8, pp. 102-114, Aug. 2002.
- [4] A. Proano and L. Lazos. Packet-Hiding Methods for Preventing Selective Jamming Attacks. IEEE Transactions on Dependable and Secure Computing, 9(1):101–114, January/February 2012.
- [5] L. van Hoesel, Y. Wei Law, J. Doumen, P. Hartel, and P. Havinga, "En- ergy efficient link layer jamming attacks against wireless sensor network MAC protocols," ACM Trans. Sensor Netw. (TOSN), Feb. 2009.
- [6] A. Mpitziopoulos, D. Gavalas, C. Konstantopoulos, and G. Pantziou, "A survey on jamming attacks and countermeasures in WSNs," IEEE Commun. Surveys Tutorials, vol. 11, no. 4, Dec. 2009.
- [7] Misra, S., Singh, R., Mohan, S.V.R.: 'Information warfareworthy jamming attack detection mechanism for wireless sensor networks using a fuzzy inference system', Sensors, 2010, 10, (4), pp. 3444–3479
- [8] Xu, W., Trappe, W., Zhang, Y., Wood, T.: 'The feasibility of launching and detecting jamming attacks in wireless networks'. Proc. Sixth ACM Int. Symp. on Mobile Ad Hoc Networking and Computing, 2005, pp. 46–57