
Impact Factor Value 4.046 e-ISSN: 2456-3463

National Conference on "Recent Advances in Engineering and Technology" SAMMANTRANA 19

 Organized by Government College of Engineering, Nagpur

International Journal of Innovations in Engineering and Science, Vol 4 No.8, 2019
www.ijies.net

263

"Expert System: The New Approach of

Construction drawn from Comparison of Different

Expert System"

Four Examples of Knowledge Engineering Languages

Chandrajeet Borkar

Instructor, Computer Science & Engineering Department

Government College Of Engineering, Nagpur, Maharashtra India

Abstract— An expert system is a computer program that

exhibits high performance in a specific problem domain

due to a large amount or formally encoded knowledge and

the ability to conduct formal reasoning on this knowledge.

An expert system is designed to do various tasks that an

expert would typically perform: diagnose, interpret,

Consult, classify, identify, Search through space or

possible solutions, explain, tutor, and analyze.

In expert systems, domain knowledge is often represented

as a set of production rules. These rules take the form of:

IF <condition> THEN <action>

This paper deals with 4 knowledge-based engineering

languages and their examples which are mention here in

the paper. Examples of Expert system mention are still in

use by many of organization. Four knowledge engineering

languages merit our special attention because they are so

widely used. Also, Paper Conclude With some of the

improvement required in the Expert system and thus it

could again spin the stop wheel of ES.

Keywords: Expert System, Knowledge, Artificial

Intelligence, Knowledgebase, KB Engineering Languages.

I. INTRODUCTION

Expert System In artificial intelligence, an expert system

is a computer system that emulates the decision-making

ability of a human expert. Expert systems are designed to

solve complex problems by reasoning about knowledge,

like an expert, and not by following the procedure of a

developer as is the case in conventional programming. The

first expert systems were created in the 1970s and then

proliferated in the 1980s. Expert systems were among the

first truly successful forms of AI software.

An expert system has a unique structure, different from

traditional programs. It is divided into two parts, one fixed,

independent of the expert system: the inference engine,

and one variable: the knowledge base. To run an expert

system, the engine reasons about the knowledge base like a

human. In the '80s a third part appeared: a dialog interface

to communicate with users. This ability to conduct a

conversation with users was later called "conversational".

II. Software architecture

The rule base or knowledge base

In expert system technology, the knowledge base is

expressed with natural language rules IF ... THEN ... For

examples:

 "IF it is living THEN it is mortal"

 "IF his age = known THEN his year of birth =

date of today - his age in years"

 "IF the identity of the germ is not known with

certainty AND the germ is gram-positive AND the

morphology of the organism is "rod" AND the

germ is aerobic THEN there is a strong

Impact Factor Value 4.046 e-ISSN: 2456-3463

National Conference on "Recent Advances in Engineering and Technology" SAMMANTRANA 19

 Organized by Government College of Engineering, Nagpur

International Journal of Innovations in Engineering and Science, Vol 4 No.8, 2019
www.ijies.net

264

probability (0.8) that the germ is of type

Enterobacteriaceae".

This formulation has the advantage of speaking in an

everyday language which is very rare in computer science

(a classic program is coded). Rules express the knowledge

to be exploited by the expert system. There exist other

formulations of rules, which are not in everyday language,

understandable only to computer scientists. Each rule style

is adapted to an engine style. The whole problem of expert

systems is to collect this knowledge, usually unconscious,

from the experts. There are methods but almost all are

usable only by computer scientists.

III. The inference engine

The inference engine is a computer program designed

to produce reasoning on rules. In order to produce

reasoning, it is based on logic. There are several kinds of

logic: propositional logic, predicates of order 1 or more,

epistemic logic, modal logic, temporal logic, fuzzy logic,

etc. Except for propositional logic, all are complex and can

only be understood by mathematicians, logicians or

computer scientists. Propositional logic is the basic human

logic, which expressed in the syllogism. The expert system

that uses that logic is also called a zeroth-order expert

system.

To guide a dialogue, the engine may have several

levels of sophistication: "forward chaining", "backward

chaining" and "mixed chaining". Forward chaining is the

questioning of an expert who has no idea of the solution

and investigates progressively (e.g. fault diagnosis). In

backward chaining, the engine has an idea of the target

(e.g. is it okay or not? Or: there is a danger but what is the

level?). It starts from the goal in hopes of finding the

solution as soon as possible. In mixed chaining, the engine

has an idea of the goal but it is not enough: it deduces in

forward chaining from previous user responses all that is

possible before asking the next question. So, quite often,

he deduces the answer to the next question before asking

it.

IV. Knowledge engineering

The building, maintaining, and development of expert

systems is known as knowledge engineering. Knowledge

engineering is a "discipline that involves integrating

knowledge into computer systems in order to solve

complex problems normally requiring a high level of

human expertise".

There are generally three individuals having interaction in

an expert system. Primary among these is the end-user, the

individual who uses the system for its problem-solving

assistance. In the construction and maintenance of the

system there are two other roles: the problem domain

expert who builds the system and supplies the knowledge

base, and a knowledge engineer who assists the experts in

determining the representation of their knowledge, enters

this knowledge into an explanation module and who

defines the inference technique required to solve the

problem. Usually, the knowledge engineer will represent

the problem-solving activity in the form of rules. When

these rules are created from domain expertise, the

knowledge base stores the rules of the expert system.

Table 1. Knowledge of Engineering Languages for

Building Expert Systems.

Tool Features Implementable

languages and

Developer

EMYCIN Rule-based

Backward

chaining

Certainty

handling

Explanation

Acquisition

INTERLISP

Stanford

University

EXPERT Rule-based

Forward chaining

Certainty

handling

Explanation

Acquisition

Consistency

checking

FORTRAN

Rutgers

University

OPS5 Rule-based

Forward chaining

Flexible control

Flexible

representation

FRANZ LISP

Carnegie-Mellon

University

Impact Factor Value 4.046 e-ISSN: 2456-3463

National Conference on "Recent Advances in Engineering and Technology" SAMMANTRANA 19

 Organized by Government College of Engineering, Nagpur

International Journal of Innovations in Engineering and Science, Vol 4 No.8, 2019
www.ijies.net

265

ROSIE Rule-based

Forward chaining

Procedure-

oriented

English-like

syntax

INTERLISP

The Rand

Corporation

Here is the detail description which shows all the

comparison between all the tools used and the different

expert system which small rules which are and are still

used. Please make a note this are much classified rules and

are bared with user they don’t bear any relation with the

paper presentation.

V. EMYCIN

This skeletal knowledge engineering language is

essentially MYCIN with the domain knowledge removed.

EMYCIN uses a rule-based knowledge representation

scheme with a rigid backward chaining control mechanism

that limits its application to diagnosis and classification-

type problems. However, the system provides

sophisticated explanation and acquisition facilities that

clearly speed expert system development.

An EMYCIN rule has the form IF antecedent THEN

consequent, where the antecedent is a collection of

true/false expression and the consequent is a conclusion

that follows the antecedent. A context tree organized

EMYCIN objects in a simple hierarchy and provides some

of the inheritance characteristics of a frame system.

EMYCIN associates a certainty value ranging from -

1(false) to +1(true) with every expression in the

antecedent. The IF portion of the rule is considered to be

true if its certainty is greater than some threshold (say0.2)

and false if below some other threshold say (-0.2).

EMYCIN uses special evidence-combining formulas to

decide how to combine the certainties in the antecedent

and update the certainty of the consequent.

An EMYCIN rule from the SACON expert system.

EMYCIN Rule:

• If :

1) The material composing the substructure is one of the

metals, and

2) The analysis error (in percent) that is tolerable is

between 5 and 30, and

3) The non-dimensional stress of the substructure is greater

than 0.9, and

4) The number of cycles the loading is to be applied is

between 1000 and 10000

• Then

It is definite (1.0) that fatigue is one of the stress behavior

phenomena in the substructure.

(English translation of the EMYCIN rule shown below)

Actual EMYCIN rule

• PREMISE:

($AND (SAME CNTXT MATERIAL

(LISTOFMETALS))

(BETWEEN* CNTXT ERROR 5 30)

(GREATER* CNTXT NO-STRESS 0.9)

(BETWEEN* CNTXT CYCLE 1000 100000))

• ACTION:

(CONCLUDE CNTXT SS-STRESS FATIGUE TALLY

1.0)

 The above Shown is a rule from SACON, a consultation

system that provides advice to a structural engineer

regarding the use of a structural analysis program called

MARC. MARC uses mathematical analysis techniques to

simulate the mechanical behaviors of objects.

VI. EXPERT

This skeletal knowledge engineering language uses a rule-

based knowledge representation scheme and had a limited

forward chaining control mechanism that makes it suitable

for diagnosis and classification-type problem. EXPERT

has the built-in explanation, knowledge acquisition, and

consistency checking module works by storing a database

of representative cases with a known conclusion and using

it to test the expert system after the knowledge engineer

adds rules. If a case doesn’t produce the correct

conclusion, the EXPERT displays the reasoning for that

case so that the knowledge engineer can understand how

the new rules led to unexpected results.

Impact Factor Value 4.046 e-ISSN: 2456-3463

National Conference on "Recent Advances in Engineering and Technology" SAMMANTRANA 19

 Organized by Government College of Engineering, Nagpur

International Journal of Innovations in Engineering and Science, Vol 4 No.8, 2019
www.ijies.net

266

EXPERT has been used to build diagnosis programs

in medicine, geology, and other areas. Since the EXPERT

was designed to handle a consultation problem in

medicine, it structures knowledge to facilitate medical

interpretation. Rules in EXPERT distinguish between

finding and hypotheses. Findings are observations like a

patient’s age or blood pressure, while hypotheses are

conclusion inferred from finding or other hypotheses. In

EXPERT, finding has a form f(finding-name, certainty-

interval), while hypotheses have the form h(hypothesis-

name, certainty-interval). The truth value is t if the finding

is true and f is false. The certainty interval represents the

confidence the expert has in the hypothesis, e.g.

h(matrl,0.2:1) means conclude hypothesis material with

the confidence of 0.2 to 1. Confidence values range from -

1(complete denial) to 1(complete confirmation).

An EXPERT rule from the AI/RHEUM expert system

EXPERT Rule:

**hypotheses

CNC the patient has a central nervous system disease

**finding

SEIZ seizures occur

PHYCH psychosis exists

OBSYN organic brain syndrome is present

COMA coma exists

**rule

IF:

One of the following is true:

Seizures, psychosis, organic brain syndrome, or coma

THEN:

Conclude serious central nervous system disease

At a confidence level of 1.0

 [1: f(seiz,t), f(psych,t), f(obsyn,t),f(coma,t) -> h(cnc,1.0)]

VII. OPS5

This general-propose knowledge engineering language

used a rule-based representation scheme that works via

forward chaining. The system’s generality supports diverse

data representation and control structures within the single

program. OPS5 has a powerful pattern-matcher and an

efficient interpreter for matching rules against the data but

lacks a sophisticated supports environment. It has no built-

in explanation or acquisition mechanisms and only

minimal facilities for program editing and debugging.

OPS5 is the latest in a succession of similar rule-based

languages (e.g., OPS, OPS4) that evolved from work at

Carnegie-Mellon Uni9versity in developing programming

languages for modeling human cognition and memory.

OPS5 and the earlier languages in the OPS5 series

have been used for many cognitive psychologies, AI and

expert system application.

An OPS5 rule has the from antecedent → consequent,

where the antecedent describe data element and the

consequent specifies the actions to take if the antecedent

matches the database. Data elements in OPS5 are objects

described by a set of attribute-value pairs. They look a bit

LISP expression, as illustrated

In English:

The tall woman is 23 years old.

In OPS5:

(WOMAN ↑HEIGHT TALL ↑AGE 23)

The object (e.g. WOMAN) comes first followed by the

attribute-value pairs. Attributes are marks with a caret (↑)

to distinguish them from values. One thing that makes

OPS5 (and LISP) so difficult to read is the use of one-word

tears to stand for complex concepts.

An OPS5 rule from the YES/MVS expert system

English Translation of OPS5 rule

• IF: The current task is to maintain the job entry

system queue space and the queue space is

critically low and there is a link to the computer

that is actively receiving a message

Impact Factor Value 4.046 e-ISSN: 2456-3463

National Conference on "Recent Advances in Engineering and Technology" SAMMANTRANA 19

 Organized by Government College of Engineering, Nagpur

International Journal of Innovations in Engineering and Science, Vol 4 No.8, 2019
www.ijies.net

267

• THEN: Send a command to cut the link and mark

the link’s reception status as “about to be NO”

Actual OPS5 rule

(P STOP-RECEPTION

(TAKS ↑ TASK-ID JES-Q-SPACE)

(JES-Q ↑ MODE PANIC)

(<THE LINK> (LINK ↑ID<L-ID>

 ↑ STATUS <<ACTIVE I/O-

ACTIVE>>

 ↑ RECEIVE YES))

→

(CALL REMOTE-MAKE

LINK-COMMAND ↑ID<L-ID>

 ↑RECEIVE NO

 ↑RM-TO: MCCF

(MODIFY <THE-LIN> ↑RECEIVE TO-BE-NO))

OPS5 rules can be somewhat verbose and

unintelligible. Even worse, the OPS5 language has no

provision for displaying English versions of the rules to the

user the way EMYCIN does. Despite this, OPS5 is one of

the most widely used knowledge engineering languages

available, and it has been widespread use is due partly to

its execution efficiency and partly to its ready availability.

VIII. ROSIE

This general-purpose knowledge engineering language

combines a rule-based representation scheme with

procedure-oriented language design. Thus ROSIE

programs are typically nested procedures and functions,

each defined as a set of rules. ROSIE has an English liked

syntax that makes its code quite readable, powerful pattern

matching routines for matching the premises of the rules

against the data, and control over remote jobs via an

interface to the local operating system. ROSIE’s supports

environment includes editing and debugging tools but no

built-in expression or acquisition facilities.

ROSIE has been used to built expert systems in a

variety of problem domain, including law, crisis

management, and the military.

Programs take the form of rule sets, each defined

to be a procedure, a generator, or a predicate. A procedure

is like a subroutine: performs some task and then returns

control to the portion of the program that called it. A

generator is like a function: it returns a value or set of

values. For example, a generator for determining medical

costs would return a specific dollar amount when given the

name of an injured party. A predicate is a function that

always returns either true or false. For example, LDS has a

predicate that decides whether or not the product is

defective.

The example given below is an actual ROSIE rule

from LDS, an expert system for analyzing product liability

cases. The system uses the facts of the case, together with

rules based on formal legal principle and attorney’s

informal procedures and strategies, to calculate defendant

liability, case worth, and an equitable settlement amount

The two ROSIE rules below represent executable

code, not the English translation of the code. ROSIE’s

expressiveness and readability expert system development,

especially in the domains where the rules are naturally

complex and detailed.

Two ROSIE rules from the LDS expert system

Actual ROSIE rule

If there is a test for product inspection and

That test is recognized by the experts as good and sound

and

That is used for possible discovery of defects and

The defendant did perform that test

Assert the product was defective for failure to test and

inspect.

Actual ROSIE rule

If the product was dangerous to a substantial number of

people and

The plaintiff was injured by the product and

The product is represented by the defendant and

(The defendant did not warn of the danger or

The warning was not complete or

The warning was insufficient) and

The normal use of the product was both intended and

foreseeable

Assert the product was defective for failure to warm.

IX. Authors Point of View for Construction of ES

Impact Factor Value 4.046 e-ISSN: 2456-3463

National Conference on "Recent Advances in Engineering and Technology" SAMMANTRANA 19

 Organized by Government College of Engineering, Nagpur

International Journal of Innovations in Engineering and Science, Vol 4 No.8, 2019
www.ijies.net

268

Today in the world the wheel of an expert system is been

slowed to a great extent. Rather Author says that it’s been

totally stopped because of the Execution time taken by the

Expert System and a lot of factors in similar ways. Here I,

Suggest some of Building an Expert system. Those points

are enlisted below

 While Construction of an expert system Knowledge

engineering should restrict himself and all another

knowledge engineer to one Implement Language

only. That is an expert system knowledge-based

(Clearly Data Base) should be designed in a single

and high-speed Extractable Knowledge Base and also

should include a various feature by itself.

 To increase the speed of the Expert system we should

exclude Inference Engine and to achieve a great

speed, we could use the Concept of state switching

and the Data Structures like Graphs and Pattern

matching algorithms.

 If expert system is been resisted to one domain

implementable language then one Expert system

could support another expert system and could also

support the chain of Expert system and hence we

could solve the multiple domain problems from the

result of one expert system to another.

 The result of Expert system that is the output of the

expert system are the various time a data which is

Structured and could be feed to an algorithm and

hence more future be operation on the data could be

done as in more sophisticated manner

Thus I can conclude that by use Expert System in true

senses we could achieve more automation in the field of

Expert System. There are various development still

required and a very modern term to become Definition of

the Expert system. The wheel of Expert system

Development is stopped somewhere but if you understand

that valuable contribution of the Expert system in the true

sense and make modification according to my view, I

could assure the history of Automation would travel and

start to a Golden Pages.

REFERENCE

[1] Donald Waterman (1986), A guide to Expert Systems,

Published by Dorling Kindersley (India), pvt ltd, Licensees

of Pearson Education in South Asia

[2] Dan W. Patterson (1990) , Introduction to Artificial

Intelligence and Expert System, Published by Pearson

Education Inc., Publishing as Prentics Hall.

[3] Stuart Russell & Peter Norvig (), Artificial Intelligence A

Modern Approach (2 edition), published by Dorling

Kindersley (India) Pvt. Ltd, Licensees of Pearson Education

in South Asia,

[4] Seymour Lipsuchutz (2006), Data Structures, Published by

Tata McGraw Hill Education Private Limited.

[5] Jackson, Peter (1998), Introduction To Expert Systems (3

ed.), Addison Wesley, p. 2.

[6] The Expert System Plant/Cd: A Case Study In Applying The

General Purpose Inference System Advise To Predicting

Black Cutworm Damage In Corn By Albert Gerard

Boulanger B.S., University or Florida., 1978 THESIS

Submitted in partial fulfillment of the requirements for the

degree of Master of Science in Computer Science in the

Graduate College of the University, Ulinois at Urbana-

Champaign ,Urbana, Illinois.

http://www.pcmag.com/encyclopedia_term/0,2542,t=conventional+programming&i=40325,00.asp

