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Abstract - The effective detection of network failures and 

operational malfunctions is the key to quick recovery and thus 

strong communication. In this paper we present the methods and 

algorithms we have developed with the aim of improving the 

effective and flexible acquisition of network  service malfunction 

(failure and operational corruption) on transaction-based 

Electronic Commerce Wide Area Networks (WANs). Specifically 

our approach to detecting critical network access detects 

network malfunction and failure in many service networks, 

where the performance of service classes is equally dependent 

and highly interconnected, and where external or natural 

resources (e.g. unmanaged or unmanaged equipment within a 

customer) can have significant impact on network performance 

and performance. In this paper we define and use algorithms (1) 

to sample and convert raw material records into operational 

data support services that highlight non-network coverage, (2) 

creates flexible operating parameters and service level for real-

time network detection and service inconsistencies, and (3) 

enables real-time network anomaly detection. 

 

 

I- INTRODUCTION 
 

Active detection of network failure and inefficiency is key to 

faster and thus stronger connections, and gaining increasing 

attention recently[1,2]. Error detection should be automatically 

adjusted, if possible, to changing variables and network 

smuggling methods. This applies especially to the current 

communications infrastructure, where both the transition and 

the route change and change at a very different time scale. 

Network error detection is one of the few "active" error 

detection methods available to detect network errors 

automatically. Anomaly Discovery aims to address the 

presence of network errors by detecting potential performance 

impairment in these networks and their applications. This is 

achieved through algorithmic recognition of network failures 

and improper use of resources. The key says 

to detect this decrease in performance, and by inserting the 

errors themselves, before the failure of the service level and 

compromise. In this way, unfavorable network detection can 

detect network errors in a timely manner, and service level 

failures are expected. The error detection is usually related to 

the detection of soft and complex network errors. This paper 

focuses on the detection of mild errors, as opposed to “heavy” 

alarms / failures [3,4,5], of networks and their devices for the 

following reasons. (1) They occur more frequently than the 

most serious errors. (2) Soft errors affect the QoS (service 

quality) of network applications and services, which need to be 

maintained in real time. (3) By obtaining soft errors at a high 

level the failure of the level and level of service and collapse 

can be expected and thus avoided in advance (effective error 

detection). (4) Detection of serious errors such as 

disconnection and power failure in general designed as alarms 

raps for device components manufacturers, which detect and 

detect error programs such as alarm assembly systems [6,7]. 

As communication infrastructure evolves into multiple multi-

service networks, the allocation of network resources across 

multiple services classes strengthens the performance of all 

classes supported on reasonably differentiated networks (Figure 

l). Therefore, performance reductions in one set of service 

classes may adversely affect the performance of others. This 
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requires unusual detection of network and service errors. Finally, 

faulty items outside the control of network monitoring systems 

can also undermine the performance of a well-monitored 

network (Figure l). 

 

Fig 1- A managed multiple service class WAN and its environment 

(i.e., non-monitored parts) 

 

 

II-NETWORK ANOMALY DISCOVERY: SUMMARY 

 

At this stage, consistent network acquisition of the network is 

summarized as a three-step process. First, sample transaction 

network data to highlight the potential confusion of network 

service per service category. Second, the temporary operating 

parameters of service classes are built from historical network 

data for operational features. Third, invalid detection is made 

by comparing real-time sample data with baseline data. 

Specifically the three steps for the detection of variable network 

anonymity are: 

 

1. Real Estate Selection of Transaction Record Options 

 

This algorithm generates network samples (e.g., transaction 

records generated by network switches) to detect transactlOns 

with a high probability of being unpopular, depending on the 

sample strategy based on the historical performance of the 

service category in question. The typical design of a faulty 

detection system is shown in Figure 2, which highlights its 

three main functional components: the sample, the generator (or 

limit) of the generator, and the anonymous detector. In this 

system, network performance data is accumulated online by the 

sample for analysis. The sample does not include performance 

measures (e.g., traffic volume, or circuit usage, from service 

classes in a transaction-focused network) in which undesirable 

data is highlighted. The performance output of historical 

network data by the sampler is analyzed by the process maker 

to create flexible and dynamic performance parameters (e.g., 

Temporally temporally). The detector compares the output of 

real-time network performance data by sample with operating 

limits and the predictable error detection method. Detector 

results are usually sent to the user graphic interface (GUI) to 

notify network operators of network irregularities and errors, or 

are sent directly to network control modules for automatic 

response and control (e.g., circuit breaker, module rerouting, 

etc. the balance between sample frequency and performance 

correction. 

 

2. Temporul-based Performance Thresholds 

 

Using the network operational standard, each service threshold 

can be divided into 4 lntO classes: weekdays, Saturdays, 

Sundays and holidays. Service class history details are used to 

create these flexible routes for each service. Expected 

performance of services predicts that these limits will increase. 

 

3. Anomaly Discovery 

 

Expected service performance is predicted by the above 

parameters, and deviations (in all sizes and dimensions, as 

defined by the set of error process) from expectations are 

indicators of network service malfunctions. 

 

The typical structure of a faulty acquisition system is shown in 

Figure 2, which highlights its three main functional elements: 

sample, rule (or limit) a generator, and a faulty detector. In this 

system, network performance data is accumulated online by the 

sample for analysis. The sample excludes performance 

measures (e.g., traffic capacity, or circuit usage, from service 

classes in a transaction-focused network) in which undesirable 

data is highlighted. The output of the sample performance 

network data is analyzed by the process maker to create flexible 

and dynamic performance thresholds (e.g., temporary). The 

detector compares the output of real-time network performance 

data by sample with operating limits and the predictable error 

detection method. The results of the detector are sent to the user 

interface (CUI) to notify network operators of network 

irregularities and errors, or to be sent directly to create network 

control modules with feedback and automatic control (e.g., 

circuit breaker, redirect module, etc.). 
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III-PERFORMANCE OF TRANSACTION-BASED 

TRADING NETWORKS BASED ON TRANSACTION 

     

 At this stage, the implementation of the generic transaction-

based Electronic Commerce WAN phase was introduced and 

analyzed. The analysis is based on structure 

of flexible algorithms for detecting non-network service 

(described in Section 4). Updated network data is collected 

from the AT&T Transaction Access Service (TAS) network. 

Typically, Transaction-based Electronic Commerce networks 

are datdtelecom (or a combination of both) networks that use 

transactions that take a short time (seconds) between a set of 

terminals (e.g., credit card scanners, or personal computers) 

and a set of processing servers (e.g. e.g. credit processing 

servers). For example, transactions between credit cards 

scanned at merchant locations and processing servers at credit 

processing centers are conducted by this type of network. 

These transactional networks deliver network management and 

operational data ranging from MIB-I1 data to network alarms. 

In a transaction split, the following 4-Tuple variants indicate 

transactions: 

(i9 s, t ,, Y At ,,,) 

 where 

⦁ "s" means the identifier of the active service category 

I "i" means the active identifier, 

it belongs to them, 

, T ,, means the start time of the transaction, and 

⦁ In ,, means the transaction time (for each service phase, Af, s 

have intermediate, upper and lower quartiles, and the 

opportunity to distribute opportunities). 

Activity identifier separately identifies activity (e.g., it can be a 

positive number counter as transactions appear on the 

network). Service class identifier identifies the service item. 

For example, credit card transactions and health-related 

transactions (e.g., drug replenishment order) are two distinct 

categories of transactions. Different service classes (in the 

standard network of multi-service classes, the number of 

service classes of about ten or even hundreds), each has a 

longer transaction time than the other. Legally, each 

component of the in-service service has its own transaction 

time, its upper and lower quartile, and its distribution-time 

function. Finally, the start time of a transaction indicates the 

start of the transaction and its duration indicates how long it 

lasts, as the names imply. A WAN-focused production 

transaction can support tens or even hundreds of transaction 

service classes in the same infrastructure, making it a set of 

visual networks that are logically segmented (but highly 

functional) in relation to each service segment. A detailed 

examination of the transaction statistics structures and their 

service categories, the allocation of a stand-alone service 

segment (with a daily transaction volume of about 140,000, 

and a transaction time of between 5.8 seconds) is illustrated in 

Figure 3. One of the most important requirements for 

improving network access and services it is clear that the 

statistical properties of random visuals (e.g., transactions, 

traffic intensity, or byte rate values) should not be timely 

(hence the prediction of the future This visualization should be 

speculative with respect to the periodic revision of statistical 

findings, because the pattern is "normal". "Statistics are 

identified and analyzed as the presence of network problems. 

As can be seen in Figure 3, PDFs of service phase 1 transaction 

are repeated ns you are every seven days in a row. This same 

effect can be clearly seen in Figure 4, which highlights the 

familiarity of PDFs at box sites. For all service classes in the 

trading networks used for transactions, this calculation applies 

normally. 
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Random (or visual) variables selected for acquisition that do 

not match the size of the traffic supported by the service. The 

amount of traffic can be calculated directly from the 

transaction period and the initial transaction period. It measures 

the amount of active transactions assigned to a particular 

category of service as operating time, depending on the size of 

the capture interval. Clearly shown in Figure 5, the transaction 

is represented as arrows in the "arrival diagram" (x-axis time in 

bzr units, while the y-axis spreads the whole number 

transaction identifier (see Equation (I)). With this presentation, 

the arrival times of the artificial are represented as the arches of 

the artificial arrows, while the length of the tasks is represented 

as the length of the archer's arrow. Within the capture interval 

(for length & time), the size of the traffic is equal to the total 

number of transactions that fall within the barrel, either partial 

or total. The transaction number is calculated by summarizing 

all the operations (e.g., arrows) that fall into that barrel, and the 

traffic force I, r of the service section s during Tn, $ (unit: 

binning interval Sr, is: 

 

For example, of the six transactions presented in Figure 5, the 

first barrel (O <T1 &) contains 6 transactions which is why 6 

units (circuits or Erlangs) of traffic consolidation. In addition, 

the second barrel (bzr <T12iQJ contains 4 transactions which is 

why 4 units of solid traffic; and finally, the third barrel (2bzr 

<T136T) contains 2 transactions and therefore 2 units (circuits 

or Erlangs) of traffic congestion.  

The weekly traffic capacity of service class "1" is shown in 

Figure 6, generated from PDFs shown in figures 3 and 4. As 

will be explained in the next section, the capture period is a 

public transaction function, so that high-potential transactions 

can be reflected in the size of the traffic.  

 

Fig 5- ARRIVAL Diagram of  Transactions in Service Class 

 

Fig 6- Traffic Intensities of service class 1 Generated from PDF 

generated from Fig 3 and 4. 

IV-IMPLEMENTATION OF ANOMALY DETECTION 

SYSTEM 

    

Currently, an online anomaly network detection system has been 

implemented in the AT&T TAS network. The system has three 

active modules: sample, threshold generator, and detector, in 

addition to the GUI. The sample analyzes real-time and 

historical records to produce robust traffic according to each 

service category. The monitoring network creates transaction 

records for all transactions in 15 minutes (this is a configurable 

parameter) daily. The 15-minute data feed creates real-time 

performance data while daily data feeds are used as the limit 

data history generation. In any case, each transaction record is 

managed to display traffic capacity in support of the service. The 

sample time for each phase of the service is different, flexible, 
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and depends on its "medium" historical service time. In the 

current launch the 15-min data feed is aggressively integrated 

into the relationships database (Oracle). The sampler receives 

records from the database to calculate the actual time traffic for 

all TAS service classes, during sample times for individual 

service classes. These street power supplies are supplied as a 

detection detector (will be explained below). On the other hand, 

daily feeds are stored as flat files, which are analyzed by the 

sample to produce the historical roadmap for all categories of 

service. This historical information is included in the threshold 

generator, which creates powerful limit templates for all service 

categories (Figure 7). 

  

Fig7- The Threshold generator computes dynamic threshold (i.e. 

Baseline + tolerance)for service class from historical traffic 

intensities and sampling interval output from sampler  

Specifically, for each TAS service, flexible routes are divided 

into 4 groups: (1) weekdays, (2) Saturdays, (3) Sundays, and (4) 

holidays. For each 4th limit group, a set of flexible limits is 

designed to predict the expected performance of TAS services 

during days, Saturdays, Sundays, and holidays, respectively. 

Each set of dynamic boundaries (upper and lower threshold) is 

built on the first predicted base I, (Tn ,,,) and tolerance d, v (Tfl 

,,) (note: “-” means “predictor”) as follows 

 

 
Basics 1, (Tn ,,) and 8 tolerance, (Tn, s) are calculated from 

historical transaction data by analysis of the one-time series and 

included on the day "day", "Saturday", "Sunday" and "holidays". 

”Classes. The [y (T ,, s) represent the “estimated” power of the 

service levels, while the (T ,,, s) represent the “average” power 

of the corresponding street force. Both 7, (T ,,, $) s and 8, (7 “, s) 

are updated periodically to follow the emergence of network 

traffic. In the wrong view, an alarm is sound indicating the 

arrival of a network service anomaly if (I) the approximate size 

(in real time) of traffic is ,,,,,,, r, ~ T ,,,) while T,, s deviates from 

the threshold more than from on the first predicted basis, and (2) 

the previous situation persists and in addition to the Sparsest, 

e.g.

 
The choice of parameters in the above determination mode (a 

and TPurTlrr) is determined by testing. At this launch an alarm 

goes off signaling the arrival of unequal network service if the 

estimated size (in real time) of traffic I ,,,,,,,, ~ LT,) during T, 

exceeds the limits of more than 50% of the predicted base and 

more than 15 minutes, ie, 

 
The selection of parameters in the above case (2, 15minutes and 

50%) is specified for TAS, and for the following reasons. First, 

the TAS network is set to deliver 15-minute discovery 

performance data. Therefore, events that persist in less than 15 

minutes are impossible to detect in real time. Second, 2 and 50% 

parameters were selected in the test. It has also been proven to 

work well in the TAS area. The user graphic interface (CUI) 

consists of (1) a control panel, (2) an alarm log, and (3) a traffic 

indicator. The control panel displays information regarding the 

performance of service categories and the values of their 

dynamic parameters, in addition to providing a database-SQL 

system debugging window. The alarm log summarizes and 

separates the negative findings and their magnitude. The traffic 

indicator provides a clear picture of the strength of the road 

based on the level of service in real time. An example of a 

service phase view is shown in Figure 8. 

 
 

Fig 8- Graphical Representation 
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V-ANOMALY DETECTION DEMONSTRATION 

 

In this section we demonstrate the power of the network 

anomaly detection system by which we have improved detection 

and network errors. Directly in Figure 9a we look at a PDF of 

the service category during an unusual operation (an unusually 

large number of long-term transactions), while the unpleasant 

case of the same service category is shown in Figure 9b. During 

the normal operation of another service category (single credit 

card) failed resulting in excessive accumulation of circuit within 

the network. 

 

 
Fig 9-(a) PDF of anomalous service class (b)PDF of same service 

class with anomalous transactions 

In figure 10 we present an example of the detection of a criminal 

service (a case related to Figure 9a). Performance ratings used at 

this time by traffic power. A set of strong limits (upper and 

lower limit) is a dynamic function of predictable core 

performance and tolerance. 

  
Fig 10- Traffic Intensity of faculty service class detected by anomaly 

detector system 

VI- CONCLUSION 

 

In this paper we present the methods and algorithms we have 

developed with the aim of improving the effective and flexible 

removal of network service malfunctions (failures and 

operational corruption) in sales based on Electronic Commerce 

Wide Area Networks. The proposed method and algorithms are 

able to detect Il On-irivial network malformations from within 

and outside the network. These are called io: (1) a performance-

enhancing sample that emphasizes potentially unstructured 

transactions, (2) a threshold generator that limits the robust 

performance of various service classes, and (3) a detector that 

makes offline discovery. We are currently working on 

expanding and exploring the field with error detection strategies 

across a wide range of communication sites, such as IP and 

wireless local networks, where reduced service performance and 

errors can significantly affect qtlality-of-service (QoS) and 

network availability. 
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