Design and Optimization of Mechanical Gantry Structure for Over Head Electrical Line (220KVD/C)

Ashish Mahure¹, Nitin Sawarkar², Swapnil Choudhary³, Bharat Chede⁴, Yogesh Menghare⁵

^{1,2,3,4,5}Department of Mechanical Engineering, Wainganga College of Engineering and Management, Dongargaon, Wardha Road, Nagpur

asheeshmahure@gmail.com

Received on: 15 April, 2022

Revised on: 21 May, 2022,

Published on: 23 May, 2022

Abstract -A Gantry Tower Structure, often known as a power tower Structure, is a tall structure that supports an overhead power line It is usually made of steel lattice. Any type of failure in the transmission line system that causes a disruption in the energy supply will consequently result in economic losses. This paper is on the failure Gantry Tower Structure, Failure Structure implementation by using CAD, Analytical. This 220 kvD/C Gantry type tower & Beam was failed after installation in Power Grid Substation at Bikaner (Rajasthan) dt on 24-OCT-2020. The failure can be costly. This is one of the most serious issues confronting the global electrical utility industry. While previous research has focused on the behavior and failure of a single tower, the research presented in this research paper is the first to consider the re-design and progression of failure of a transmission structure segment. To accomplish this, a unique CAD/numerical model was developed in this research. The formulation and validation of this CAD/numerical model are described in several portions of the thesis, which will be explored in detail in this article.

Keywords: Failure of Gantry Tower Structure, **CAD**-Model & Analytical comparison

I- INTRODUCTION

Gantry structures are mainly used for guiding the power conductor from last tower near substation to the electrical equipment's in a substation. This structure consists of a number of columns and Girder beams, which depend on number of circuits of the line. A gantry is an over head bridge-like structure supporting equipment such as a crane, signals, or cameras. A Structural design of Gantry Structure (also known as a mechanical pylon structure) is a tall structure (usually a steel lattice structure) used to support an overhead power line. In electrical grids, they are used to carry high voltage transmission lines that transport bulk electric power from generating stations, transmission and distribution lines that transport power from substations to electric customers. A Structural design of Gantry Structure plays a very important role in power distribution network and is often subject to massive load. Design of lattice gantry structure often based a linear response to various loading.A Structural design of gantry has to carry the heavy transmission conductors at a sufficient safe height from the ground. In addition to that, all gantries have to sustain all kinds of natural calamities. So Gantry structure design is an important engineering job where civil, mechanical, and electrical engineering concepts are equally applicable.

B-AnalyticalAnalysisofBeam&GantryTowerStructure

1.0 DESIGNCRITERIA

1.1 SCOPE

This document covers design Calculations of 220KV Gantry. Beam Tower Structure Type (T2), Foundation Boltand Base Plate

	Plate
S.NO	STRUCTUREDESCRIPTION
1	220KVTOWERT2

1.2 UNITS OF MEASUREMENTS

Units of measurements used in analysis shall be of SI Units

1.3 CODES AN DREFERENCES

The following Codes and standards have been referred:

S.No	C	ODE		DESCRIPTION								
					S							
1	IS800:1984		Code of Practice for	r General Construction in	Steel							
2	IS802:1995(Part1/S	Sec1)	Code of Practice Us Stresses (Section 1	Code of Practice Use of Structural Steel in OHT Line Towers, Part1 Materials, Loadsand Permissible Stresses (Section 1- Materia ls and Loads)								
3	IS802:1995(Part1/S	Sec2)	Code of Practice Us Permissible Stres	se of Structural Steel in O ses (Section 2- Permiss	HT Line Towers, Part1 Materials, Loads and sible Stresses)							
4	IS802:1978(PartII)		Code of Practice Us Inspection and Pac	Code of Practice Use of Structural Steelin OHT Line Towers, Part Fabrication, Galvanizing, Inspection and Packing								
5	IS808:2004		Dimesnions for Hot	Rolled Steel Beam, Colu	mn, Channel and Angle Sections							
6	IS875(PartItoV)		Code of Practice for	r Design Loads for Buildi	ngs & Structures							
7	IS1893:1984		Criterial for Earthqu	Criterial for Earthquake Resistant Design of Structures								
1.4PLANTSITEINF	ORMATION											
Location of site			:BIKANER(RA	JSTHAN)								
1.5WINDPARAME	ΓERS											
Basic Wind Spee	ed	Vb	:47m/sec		(AsperIS875,Part-3:1987,Appendix-Acl-5.2)							
Risk Coefficien	t	k1	:1.07		(AsperIS875,Part-3:1987,Table-1)							
Terrain, Height I	Factor	k2	:1.03	(20mheight)	(AsperIS875,Part-3:1987,Table-2)							
Topography Fac	ctor Design	k3	:1.18		(AsperIS875,Part-3:1987,Ann.C)							
Wind Speed De	sign Wind	Vz	:61.13m/sec	(Vb*k1*k2*k3)								
1.6 FACTOR OFSA	FETY:	Pz	:2.29kN/Sqm	(0.6*Vz ² /980.6)								
A) For Structure	es ditions											
SCF	IUIUONS		:2.00									
			:1.50									

https://doi.org/10.46335/IJIES.2022.7.5.7 Vol. 7, No. 5, 2022, PP. 30 -38

e-ISSN: 2456-3463

3.0)W	IND LOAD CALCULA	TIONON	TOWER	R: T1													
3.1)W	IND LADO N Transver	rse FACE	(T-WINI)):													
De	sign Wind Pressure									=	2.29	kN/m ²					
Lei (B/	ngth of Tower at Top of B)	Girder								=	1.50	m	х	1.50			
Lei	ngth of Tower at Plinth L	evel (B/B)	Transvers	seface						=	3.50	m	х	2.50	m		
He	ight of Tower from Girde	er Tonto	114110101							=	4.400	m					
Per	nk	i iopto															
Но	ight of Girder 1									=	1 20	m					
Ца	ight of Tower from DL to	Cirdar								_	10.90	m					
De	igni of Tower from FL to	Gildel								-	10.50						
Slo	pe of Tower below									=	0.092	Rad					
Gir	der									=	5.257 0.0917	Deg.					
Panel No.	Member	Width of Panel at Top(m	Width of Panel at Botto m(m)	Panel Heigh t(m)	Length of Membe r(m)	No. of Mem ber	Mer	nber Size	Exposed Area(m ²)	Total Exposed Area(m ²)	Total Boundary Area(m ²)	CG Height (m)	Solidity Ratio	Drag Factor	Total Wind (kN)	No. of Nodes	Wind Transfer redon Each Node (kN)
	MainLeg	1.50	1.50	1.200	1.200	2	110	x110x 10	0.26/								
6	HORIZONTALBRACING	1.50	1.50	0.000	1.500				0.204								
	InclinedBracing	4 50				2	90	x90x 12	0.204	0.784	1.80	0.600	0.436	2.430	4.361		
5		1.50	1.50	1.200	1.921	2	90 65	x90x 12 x65x 6	0.270	0.784	1.80	0.600	0.436	2.430	4.361	8	1.185
	MainLeg	1.50 1.50	1.50 1.82	1.200	1.921 3.000	2 2 2 2	90 65 110	x90x 12 x65x 6 x110x 10	0.204	0.784	1.80 2.88	0.600	0.436	2.430	4.361	8	1.185
	MainLeg InclinedBracing	1.50 1.50 1.50	1.50 1.82 1.82	1.200 1.737 1.737	1.921 3.000 2.397	2 2 2 2 2	90 65 110 65	x90x 12 x65x 6 x110x 10 x65x 6 x110x 10	0.204 0.270 0.250 0.660 0.312	0.784 0.972	1.80 2.88	0.600 0.841	0.436 0.338	2.430 2.300	4.361 5.117	8	1.185
4	MainLeg InclinedBracing MainLeg InclinedBracing	1.50 1.50 1.50 1.82 1.82	1.50 1.82 1.82 2.13 2.13	1.200 1.737 1.737 1.737 1.737	1.921 3.000 2.397 1.737 2.626	2 2 2 2 2 2 2	90 65 110 65 110 65	x90x 12 x65x 6 x110x 10 x65x 6 x110x 10 x65x 6 x110x 10	0.20 0.270 0.250 0.660 0.312 0.382 0.341	0.784 0.972 0.724	1.80 2.88 3.43	0.600 0.841 0.845	0.436 0.338 0.211	2.430 2.300 2.800	4.361 5.117 4.639	8	1.185
4	MainLeg InclinedBracing MainLeg InclinedBracing MainLeg	1.50 1.50 1.50 1.82 1.82 2.13	1.50 1.82 1.82 2.13 2.13 2.59	1.200 1.737 1.737 1.737 1.737 2.482	1.921 3.000 2.397 1.737 2.626 2.482	2 2 2 2 2 2 2 2 2 2	90 65 110 65 110 65 110	x90x 12 x65x 6 x110x 10	0.250 0.270 0.250 0.660 0.312 0.382 0.382 0.341	0.784 0.972 0.724	1.80 2.88 3.43	0.600 0.841 0.845	0.436 0.338 0.211	2.430 2.300 2.800	4.361 5.117 4.639	8	1.185
4	MainLeg InclinedBracing MainLeg InclinedBracing MainLeg InclinedBracing	1.50 1.50 1.50 1.82 1.82 2.13 2.13	1.501.821.822.132.132.592.59	1.200 1.737 1.737 1.737 1.737 2.482 2.482	1.921 3.000 2.397 1.737 2.626 2.482 3.418	2 2 2 2 2 2 2 2 2 2 2 2	90 65 110 65 110 65 110 65	x90x 12 x65x 6 x110x 10 x65x 6	0.200 0.270 0.250 0.660 0.312 0.382 0.341 0.546 0.444	0.784 0.972 0.724 0.990	1.80 2.88 3.43 5.86	0.600 0.841 0.845 1.201	0.436 0.338 0.211 0.170	2.430 2.300 2.800 3.000	4.361 5.117 4.639 6.804	8	1.185 1.430
4	MainLeg InclinedBracing MainLeg InclinedBracing MainLeg InclinedBracing MainLeg	1.50 1.50 1.50 1.82 1.82 2.13 2.13 2.59	1.501.821.822.132.132.592.593.04	1.200 1.737 1.737 1.737 1.737 2.482 2.482 2.500	1.921 3.000 2.397 1.737 2.626 2.482 3.418 2.500	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	90 65 110 65 110 65 110 65 110	x90x 12 x65x 6 x110x 10	0.200 0.270 0.250 0.660 0.312 0.382 0.341 0.546 0.444 0.550	0.784 0.972 0.724 0.990	1.80 2.88 3.43 5.86	0.600 0.841 0.845 1.201	0.436 0.338 0.211 0.170	2.430 2.300 2.800 3.000	4.361 5.117 4.639 6.804	8	1.185
4 3 2	MainLeg InclinedBracing MainLeg InclinedBracing MainLeg InclinedBracing MainLeg InclinedBracing	1.50 1.50 1.50 1.82 1.82 2.13 2.59 2.59	1.501.821.822.132.132.592.593.043.04	1.200 1.737 1.737 1.737 2.482 2.482 2.500 2.500	1.921 3.000 2.397 1.737 2.626 2.482 3.418 2.500 3.758	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	90 65 110 65 110 65 110 65 110 65	x90x 12 x65x 6 x110x 10 x65x 6	0.200 0.270 0.250 0.660 0.312 0.382 0.341 0.546 0.444 0.550 0.489	0.784 0.972 0.724 0.990 1.039	1.80 2.88 3.43 5.86 7.04	0.600 0.841 0.845 1.201 1.216	0.436 0.338 0.211 0.170 0.148	2.430 2.300 2.800 3.000 3.200	4.361 5.117 4.639 6.804 7.610	8	1.185
4 3 2 1	MainLeg InclinedBracing MainLeg MainLeg	1.50 1.50 1.50 1.82 1.82 2.13 2.13 2.59 2.59 3.04	1.50 1.82 1.82 2.13 2.13 2.59 3.04 3.04 3.50	1.200 1.737 1.737 1.737 2.482 2.482 2.500 2.500 2.500	1.921 3.000 2.397 1.737 2.626 2.482 3.418 2.500 3.758 2.500	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	90 65 110 65 110 65 110 65 110 65 110	x90x 12 x65x 6 x110x 10 x65x 6 x110x 10	0.250 0.270 0.250 0.660 0.312 0.382 0.341 0.546 0.444 0.550 0.489 0.550	0.784 0.972 0.724 0.990 1.039	1.80 2.88 3.43 5.86 7.04	0.600 0.841 0.845 1.201 1.216	0.436 0.338 0.211 0.170 0.148	2.430 2.300 2.800 3.000 3.200	4.361 5.117 4.639 6.804 7.610	8	1.185 1.430 1.945

e-ISSN: 2456-3463

3.2)W 3.2)W Des Ler (B/ Ler Hei Bot Slo Gir	IND LOAD CALCULA IND LADONL ON GIT sign Wind Pressure ngth of Tower at Top of B) ngth of Tower at Plinth L ight of Girder-1 ight of Tower from PL to tom pe of Tower below der	ATION ON FUDINAL Girder evel (B/B) Girder	TOWEI FACE (I	R: T1 -WIND):						= = = = =	2.29 1.50 2.50 1.20 15.40 0.032 1.860 0.0325	kN/m ² m m m Rad Deg.	x x	1.50 3.50	m		
Pane l No.	Member	Width of Panel at Top(m)	Widt h of Panel at Botto m(m)	Pane l Heig ht(m)	Length of Memb er(m)	No . of Me mb er	Ме	mber Size	Expose d Area (m ²)	Total Expose d Area(m ²)	Total Boundar y Area(m ²)	CG Heigh t(m)	Solidit y Rati o	Dra g Facto r	Tot al Win d(k N)	No. of Nodes	Wind Transfer redon Each Node (kN)
	MainLeg	1.50	1.50	1.200	1.200	2	110	x110x 10	0.264								
6	HORIZONTALBRACING	1.50	1.50	0.000	1.500	2	90	x90x 12	0.270	0.784	1.80	0.600	0.436	2.600	4.666		
	InclinedBracing	1.50	1.50	1.200	1.921	2	65	x65x <mark>6</mark>	0.250							8	1 114
5	MainLeg	1.50	1.66	1.737	1.737	2	110	x110x 10	0.382	0.687	2.74	0.854	0.251	2.700	4.249		
		1.50	1.01	1.737	2.347	2	110	XCOX 0	0.305								
4	InclinedBracing	1.66	1.82	1.737	2.456	2	65	x65x 6	0.302	0.701	3.02	0.855	0.233	2.800	4.498		
	MainLeg	1.82	2.04	2.482	2.482	2	110	x110x 10	0.546							8	1.639
3	InclinedBracing	1.82	2.04	2 482	2 442		65	x65x 6	0.444	0.990	4.79	1.217	0.207	3.800	8.611		
		1.02	2.01	Z , TUZ	3.412	2						1	1				
	MainLeg	2.04	2.27	2.500	2.500	2	110	x110x 10	0.550	0.07-		1.05-					
2	MainLeg InclinedBracing	2.04	2.27 2.27 2.27	2.500	2.500 3.300	2 2 2	110 65	x110x 10 x65x 6	0.550	0.979	5.40	1.228	0.182	2.850	6.389	_	
2	MainLeg InclinedBracing MainLeg	2.04 2.04 2.27	2.27 2.27 2.50	2.500 2.500 2.500	3.412 2.500 3.300 2.500	2 2 2 2	110 65 110	x110x 10 x65x 6 x110x 10	0.550 0.429 0.550	0.979	5.40	1.228	0.182	2.850	6.389	8	1.900

(DESIGN OF FOUNDATION BOLT & BASE PALTE FOR TOWER-T2) <u>DESIGN OF</u> <u>FOUNDATION BOLT</u>:

Provide foundation bolt perlegnos dia Area of bolt Max. Up lift Load perleg: Max. shear force perleg: Max. compression: Uplift force(max. Tension/bolt Maximum Shear Stressper Bolt: Allowable Tension in Bolt: Allowable Bond strength of concrete: Shear Stress for Bolt:	4 & = = = = = =	1257 213480 37323 200205 213480 37323 120 0.81 801	40 mr mm ²)N SN N N) / 3 / N/mr N/mm N/mm	m $ \begin{array}{c} 4 \\ 4 \\ 2 \\ n^2 \\ n^2 \end{array} $:	= = (ReferTal (ReferTal	533701 9330.8 able8.1off ble21ofIS:456 able8.1off	N N S:800-1984) 5:2000) S:800-1984)
Area of bolt required(A)		444.750)mm					
= Dia of bolt required: =		23.803	3=	24	<	40	S	afe
Edge distance required,		1. 5	X	40	=	60.0	mm	
Tension capacity of bolt $Tdb=Tnb$ \Box m, $T_{nb}=0.9f_{ub}A_n < f_{yb}A_{sb}(\gamma_{mb}/\gamma_{mo})$ γ_{mo} Shank are a of the bolt (Asb)	, =1.1		=	γmb fyb fub 125 7	2 = = mm ²	1.25 240 400 2	N/mm ² N/mm ²	
Net tensile area at the bottom of threads(An)			=	980	mm	2		
0.9fubAr f _{yb} A _{sb} (γmb/γmo) T _{nb}	1= =	352.86 342.72 342.7	K N K N					
Tension capacity of single bolt Tdb		274.2	K N					
= Tension/bolt(Tb) =	H	53.4 enceO.K	K N					
Shear capacity of bolt: $Vnsb= \ fuAn / \ \sqrt{3}$	=	226.4	K N	,		V _{dsb} =	181.09	K N

Bearing capacity of the bolt:

$V_{npb}=$ 2.5 kb dtfu		Kb =				
= 22960		=	0.02			
				e=	71.4	
V _{dpb} = 18.3	7			fu=	410	
KN				do=	42mm	
There fore Shear capacity of single	Bol=	18.4		p=	110mm	
	Har					
	Her	iceO.K				
Embedded Length of bolt required:	=	<u>53370</u> X		1	=	531 mm
		Pi		40	x	
					0.	
					0	
Provide foundation bolt per legnos	4&			diaad	1500mmHe	embedmentlength
	40mm	1			ncesafe	
DESIGN OF BASE PLATE						
Max. Compression perleg:	=	200.21KN				
Max. Tension perleg:	=	213.48KN				
Referring to Clause 34.40of IS:456-2000 per	rmissible be	aring stress on c	concreteis	3		
0.45 fck Hence permissible bearing stress or	concreteis.	45fck				
	=	0.45x	20)=	9.00N/mm ²	
Provide M.S. Base Plate of		350x	350	<mark>)</mark> x	28mm	
size Bearing capacity of base	=	1.6<	9.0	0	perleg Henceok	

Bearing capacity of base plate:

Maximum bearing pressure on pla	ate:	=	213480	/	122500) =	1.7	43 N/mm ²	
B/B dist. Of bott. Leg from C.G. of plate		=	75	mm			(IS808	:1989,Table-5.1)	
Lever of base plate in axis A-A		=	75	mm					
Bottomleg		=	110	x	110	х		10mm	
Length of base plate in axis A-A		=	350/2	+ 350	/2				
		=	175	+	175				
		=	V [(175) ² +	175) ²]				
		=	247.487	/ 4					
		=	61.87	mm					
Hence moment on the base plate Md		=	6671.25	N-mm					
Assuming width of the plate b		=	1.00	mm					
	f_{ck}	=	25	N/mm ²					
	fu	=	500	N/mm ²					
	fy	=	250	N/mm²					
	Ύmo	=	1.1						
Thickness of base plate required		=	√(6Mdvmo/1	.2*bfv)				
intenness of case plate required		=	12.11	mm<	,	28 n	nm	Henceok	
Provide M.S. Stiffener Plate of size	ze		350	x	300	x		10mmperleg	
Edge distance of boltc entre		=	60.0) <	60	mm			
Boltto Bolt distance alongx-x		=	350) - '	120	=	230	mm	
Boltto Bolt distance alongz-z		=	350) -	120	=	230	mm	
Moment at the face of the column flange-(for	compression	on colu	ımn)						
		=	1.6343265306	51224*	(230/4+	61.8	718433	538229)*((60^2)/2	2=
		=	351166.6271	l-mm					
Moment at face of stiffener (due to bolt tens	on)-								
		=	53370*(230-1	.10)/2					
		=	3202200mmN	l-mm					
Height of plate required		=	$\sqrt{(6M_d\gamma_{mo}/1)}$.2*bfy)				
			15.32	mm					
Hence, Provide stiffner plate l	neightas		350	mm					
· · · · · ·	C		Henceok						
REACTIONFORFDNANDBASEPLAT	EDESIGN-								

CONCLUSIONS

The paper was successfully achieved its objectives that is the problems which are occurred in the Gantry tower are now overdesigned and checked by using all possible parameter which are occur red while installation as well as giving its

REFERENCES

- [1] Failure Test report "MD" (30 -60 Dev./D.E.-00) NT +9M body extension 220 kV multi – circuit transmission tower design.
- [2] IS802Part1Sec11995Codeofpracticeforuseofstructur alsteelinoverheadtransmissionlinetowers, Part1.
- [3] Ch. Sudheer (2013), "Analysis And Design Of 220kv Transmission Line Tower In Different Zones I &VWithDifferentBaseWidths-AComparativeStudy"InternationalJournalOfTechno logyEnhancementsAnd Emerging Engineering Research, Vol1, Issue435Issn2347-4289
- [4] C. Preeti1 and K. Jagan Mohan (2013), "Analysis of Transmission Towers with Different Configurations" Jordan Journal of Civil Engineering, Volume7, No. 4.
- [5] Yoganan tham. C Helen Santhi.M (2013), "Dynamic Analysis of Transmission Towers International Journal of Advanced Information Science and Technology (IJAIST)"Vol.20,No.20.
- [6] Umesh S. Salunkhe and Yuwaraj M. Ghugal (2013)," Analysis And Design Of Three Legged 400k V Double CircuitSteelTransmissionLineTowersInternationalJ ournalofCivilEngineeringandTechnology" Vol.04, Issue 3.
- [7] Srikanth L. and Neelima Satyam D (2014), "Dynamic Analysis Of Transmission Line Towers International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering Vol:8,No:4.
- [8] Dharmender Panth, IIT-BHU, Varanasi, U.P., India, Reasons For Failure Of Transmission Lines AndTheirPreventionStrategies, Volume-2, Issue-1, Jan.-2014
- [9] Siti Aisyah Kamarudin, Fathoni Usman, Intan Nor Zuliana Baharuddin "Review on analysis and design of lattice steel structure of overhead transmission tower" College of Graduate Studies, Universiti

TenagaNasional,Kajang,Malaysia,InstituteofEner gyInfrastructure,UniversitiTenagaNasional,Kajan g, Malaysia

[10] Vinay RB, Ranjith A, and Bharath A (2014).

service life without any catastrophic failure. And it is possible because of team work and support of senior person in this project. It is validate by using FEM based modeling technique, for this CAD is designing such away that the proposed model will not be failed in the future and its fatigue life will be more.

Optimization of transmission line towers : P-Delta analysis. International Journal of Innovative Research in Science, Engineering and Technology, 3(7):14563–14569.

- [11] Usman Fand Megat Asyraf MIR (2011). Simulation of progressive collapse for transmission tower.Inthe 1st TNB ICT Technical Conference, College of Information Technology, Universiti Tenaga Nasional, Kajang, Malaysia.
- [12] Rao NP, Knight GS, Mohan SJ, and Lakshmanan N (2012). Studies on failure of transmission line tower sintesting. Engineering Structures, 35:55-70.
- [13] Rao NP and Kalyanaraman V(2001). Non-linear behavior flattice panel of angle towers. Journal of Constructional Steel Research, 57(12):1337-1357.
- [14] Preeti C and Mohan JK (2013). Analysis of transmission towers with different configurations. Jordan Journal of Civil Engineering,7(4): 450– 460.
- [15] Mc Clure Gand Lapointe M (2003). Modeling the structural dynamic response of over head transmission lines. Computers and Structures, 81(8): 825-834.
- [16] Fu X and Li HN (2016). Dynamic analysis of transmission tower-line system subjected to wind and rain loads. Journal of Wind Engineering and Industrial Aerodynamics, 157: 95–103.
- [17] Baran E, Akis T, Sen G, and Draisawi A (2016). Experimental and numerical analysis of a bolted connection in steel transmission towers. Journal of Constructional Steel Research, 121:253-260.
- [18] Albermani F, Kitipornchai S, and Chan RWK (2009). Failure analysis of transmission towers. Engineering Failure Analysis, 16(6): 1922-1928