
https://doi.org/10.46335/IJIES.2023.8.10.2 e-ISSN: 2456-3463

Vol. 8, No. 10, 2023, PP. 6- 19

International Journal of Innovations in Engineering and Science, www.ijies.net

6

Driver Drowsiness Detection System using Arduino

and Deep Learning

Omkar Jagtap1, Somesh Chaurasia2, Pranjali Choudhary3, Gopal Buwade4, Mahesh Dhote5,

Dr. U.B. Aher6

1-5Student, Department of Computer Engineering, Government Polytechnic, Nagpur.
6 Lecturer, Department of Computer Engineering, Government Polytechnic, Nagpur.

omkarjagtap1011@gmail.com

Received on: 25 October, 2023 Revised on: 24 November 2023 Published on: 28 November, 2023

Abstract-- The proposed paper aims to develop a

nonintrusive real-time fatigue detection system, with a

specific emphasis on long-distance drivers. This system

employs camera technology to capture images continuously

and assesses the driver's eyes through a specified

algorithm. The algorithm focuses on identifying frames with

closed eyes as indicative of fatigue. Upon detecting a closed

eyes frame, a counter is initiated, incrementing with each

subsequent identification. Once the counter surpasses a

predefined threshold, an alert is triggered. Conversely, if

open eyes are detected, the counter resets to zero. The

system incorporates machine learning algorithms, ensuring

robust performance across various driving conditions. The

algorithm leverages a diverse dataset to refine its ability to

discern subtle signs of fatigue, making it adept at detecting

nuanced patterns indicative of drowsiness. This dynamic

learning capability positions the system as an intelligent

and evolving solution, capable of addressing the evolving

challenges associated with driver fatigue. As a result, the

proposed project not only aligns with current safety

standards but also anticipates future advancements,

contributing to a safer and more secure driving

environment.

Keywords: Fatigue Detection System, Open CV,

Convolutional Neural Network (CNN), Driver Drowsiness,

Face Detection.

I-INTRODUCTION

1.1 Problem Definition

Driver drowsiness poses a critical threat to road safety,

necessitating the development of an effective alert system

specifically designed for four-wheeled vehicles. The current

landscape relies heavily on wearable devices that utilize

vibrations to alert drivers, yet these solutions are marred by

inherent limitations, including user irritation and the

inconvenience of having to wear them. This research

addresses these shortcomings and endeavours to create a

non-intrusive drowsiness detection system tailored for all

drivers of four-wheelers.

The proposed system seeks to leverage deep learning

models integrated with cameras, LEDs, buzzers, and LCDs

to detect signs of drowsiness, such as closed eyes or the

onset of sleep. Unlike existing wearable, this system aims to

provide real-time alerts without requiring the driver to wear

any additional devices. This approach not only enhances

user comfort but also expands the reach of the solution to a

wider demographic of drivers.

However, implementing an efficient drowsiness detection

system using these components poses several challenges,

most notably the need to minimize false alarms. False alerts

https://doi.org/10.46335/IJIES.2023.8.10.2 e-ISSN: 2456-3463

Vol. 8, No. 10, 2023, PP. 55- 58

International Journal of Innovations in Engineering and Science, www.ijies.net

7

can erode user trust in the system and may lead to disregard

or disuse. This research focuses on refining the deep

learning model to achieve a high level of accuracy in

distinguishing between genuine drowsiness indicators and

normal variations in driver behavior. By addressing this

challenge, the system aims to become a reliable and non-

intrusive tool in enhancing road safety.

Additionally, the project recognizes the importance of real-

world applicability. Testing scenarios will be diverse,

encompassing various driving conditions and environmental

factors, to ensure the robustness and adaptability of the

system. This research aims to contribute to the advancement

of drowsiness detection technology, not only by introducing

a novel and non-intrusive alert system but also by

addressing the critical issue of minimizing false alarms,

thereby promoting a safer driving experience for all.

1.2 Motivation

Road safety has emerged as a critical global concern, with

traffic accidents claiming the lives of millions annually.

Among the various factors contributing to road accidents,

driver drowsiness stands out as a significant and often

underestimated threat. Drowsiness-related incidents

account for an estimated 20% of all road accidents

worldwide, with this figure rising to as high as 50% on

certain roads. The consequences of drowsy driving can be

devastating, leading to fatalities, injuries, and substantial

property damage.

The Samruddhi Mahamarg, a newly constructed

expressway in Maharashtra, India, has witnessed a

concerning rise in accidents attributed to driver drowsiness.

This expressway, with its long stretches of highway and

high speeds, presents a particularly dangerous environment

for drowsy drivers. The monotonous nature of long-

distance driving and the reduced alertness associated with

fatigue can significantly impair a driver's ability to react

promptly and make sound decisions, increasing the risk of

accidents.

The alarming frequency of drowsiness-induced accidents on

the Samruddhi Mahamarg highlights the urgent need for a

reliable and effective system to detect and alert drivers of

their drowsy state. In 2022, the Samruddhi Mahamarg

recorded a staggering 358 accidents, with driver fatigue

identified as a major contributing factor in 27% of these

incidents. The impact of these accidents is far-reaching, not

only causing loss of life and injuries but also leading to

significant economic losses due to property damage and

disruptions in transportation.

1.3 Objective

The overarching goal of this project is to develop a

sophisticated and unobtrusive drowsiness detection system

that employs a camera and a buzzer to identify and alert

drivers of their drowsy state. The system should exhibit

exceptional accuracy in differentiating between open and

closed eyes, minimizing false alarms to avoid unwarranted

distractions for the driver. To achieve this objective, the

MobileNetV1 model is modified to create a customized

model specifically tailored for drowsiness detection. This

customized model utilizes a deep learning approach to

analyze the driver's facial features, particularly eye states, to

accurately identify signs of drowsiness.

Specific objectives encompass:

1. Real-time Eye Detection: The system must

effectively detect and track the driver's eyes in

real time, even under varying illumination

conditions and with diverse facial expressions.

2. Precise Eye State Classification: The

customized MobileNetV1 model should

accurately classify the driver's eye state as open,

closed, or partially closed, providing a reliable

assessment of their drowsiness level.

3. Timely and Effective Alerts: The system should

provide timely and effective alerts to the driver

when drowsiness is detected, utilizing visual and

auditory cues.

4. Minimization of False Alarms: The system

should be meticulously designed to minimize

false alarms, ensuring that alerts are triggered

only when genuine drowsiness is detected,

avoiding unnecessary distractions for the driver.

1.4 Scope of the Study

The study conducted is sharply focused on developing and

implementing a non-intrusive Driver Drowsiness Detection

System specifically designed for the unique demands of the

Samruddhi Mahamarg. What sets the proposed project apart

is its commitment to simplicity and seamless integration

into the vehicle environment. Unlike other products in the

market that necessitate drivers to wear additional devices,

the system stands out by utilizing commonplace

components such as cameras and buzzers. This approach not

only prioritizes accessibility but also eliminates the need for

drivers to wear any extra components, enhancing user

convenience. The scope extends to real-time drowsiness

detection based on facial cues, with careful consideration

given to potential challenges, including variations in

lighting conditions and individual facial features.

https://doi.org/10.46335/IJIES.2023.8.10.2 e-ISSN: 2456-3463

Vol. 8, No. 10, 2023, PP. 55- 58

International Journal of Innovations in Engineering and Science, www.ijies.net

8

Recognizing these limitations, proposed study is dedicated

to continuous refinement and updates to ensure the system's

accuracy and reliability. Through this endeavour, the aim is

to contribute a practical, user-friendly solution to address

drowsy driving and improve road safety on the Samruddhi

Mahamarg.

1.5 Project Significance

The successful implementation of this drowsiness detection

system holds immense potential to enhance road safety on

the Samruddhi Mahamarg and beyond. By effectively

detecting and alerting drowsy drivers, the system can

significantly reduce the incidence of fatigue-related

accidents, saving lives and preventing injuries. Additionally,

the unobtrusive nature of the camera-based approach is

expected to increase the system's acceptability among

drivers.

The development of this drowsiness detection system aligns

with the growing emphasis on advanced driver-assistance

systems (ADAS) that aim to improve road safety by

reducing human error. By addressing the critical issue of

driver drowsiness, this project contributes to the broader

goal of promoting safer and more responsible driving

practices.

II- EXISTING SYSTEM

Several existing fatigue detection systems rely on hardware-

based sensors and modules to monitor physiological and

behavioural indicators of fatigue. While these approaches

offer direct measurements of fatigue-related signals, they

often face limitations in terms of practicality, cost, and

reliability.

Infrared Sensor-Based Systems:

One common approach utilizes infrared (IR) sensors placed

on the eye to detect fatigue-related changes in pupil dilation.

However, this method requires direct contact with the user's

eye, which can be uncomfortable and impractical for

everyday use. Additionally, loose sensor placement can lead

to inaccurate measurements and false detections.

EEG-Based Systems

Electroencephalography (EEG) systems measure brain

activity to assess fatigue levels. While EEG provides rich

information about brain state, it requires complex and

expensive equipment, making it impractical for widespread

use. Moreover, EEG signals can be influenced by various

factors, potentially affecting the accuracy of fatigue

detection.

EEG-Based Systems

Electroencephalography (EEG) systems measure brain

activity to assess fatigue levels. While EEG provides rich

information about brain state, it requires complex and

expensive equipment, making it impractical for widespread

use. Moreover, EEG signals can be influenced by various

factors, potentially affecting the accuracy of fatigue

detection.

EEG-Based Systems

Electroencephalography (EEG) systems measure brain

activity to assess fatigue levels. While EEG provides rich

information about brain state, it requires complex and

expensive equipment, making it impractical for widespread

use. Moreover, EEG signals can be influenced by various

factors, potentially affecting the accuracy of fatigue

detection.

Wearable Device-Based Systems

Wearable devices, such as smart watches or fitness trackers,

have gained popularity for fatigue monitoring.

However, these devices often rely on indirect measures of

fatigue, such as heart rate variability or activity levels,

which may not always accurately reflect fatigue state.

Challenges with Hardware-Based Fatigue Detection

 The use of hardware-based sensors and modules for

fatigue detection presents several challenges:

 Cost: The requirement for specialized hardware can

 Significantly increase the overall cost of the system,

limiting its accessibility.

 Usability: Hardware sensors often require direct

contact with the user's body, which can be

uncomfortable and impractical for everyday use.

 Reliability: Hardware connections can become loose

or malfunction, leading to false detections and

reduced system reliability.

 Setup Complexity: Assembling and configuring the

hardware components can be a time-consuming and

tedious process, requiring technical expertise.

III-PROPOSED SYSTEM

The proposed system is a non-intrusive drowsiness

detection system that utilizes a camera, a buzzer, and a

processing unit to identify and alert drivers of their drowsy

state. The system effectively detects and tracks the driver's

eyes in real time, even under varying illumination

conditions and with diverse facial expressions. The

customized MobileNetV1 model accurately classifies the

driver's eye state as open, closed, or partially closed,

https://doi.org/10.46335/IJIES.2023.8.10.2 e-ISSN: 2456-3463

Vol. 8, No. 10, 2023, PP. 55- 58

International Journal of Innovations in Engineering and Science, www.ijies.net

9

providing a reliable assessment of their drowsiness level.

When drowsiness is detected, the system promptly alerts the

driver through visual and auditory cues, maximizing the

chances of preventing a drowsy driving incident.

Advantages of the Proposed System are:

 Non-intrusive: The system does not require drivers to

wear any additional devices, enhancing user comfort

and acceptance.

 Real-time detection: The system operates in real time,

providing immediate feedback to drivers about their

drowsiness state.

 High accuracy: The customized MobileNetV1 model

demonstrates high accuracy in classifying eye states,

minimizing false alarms and maximizing the system's

reliability.

 Dual-alert mechanism: The combination of visual and

auditory alerts ensures that drivers receive clear and

timely warnings about drowsiness.

 Seamless integration: The system is designed for easy

integration into the vehicle environment, with discreet

camera placement and compatibility with existing

audio systems.

Overall, the proposed drowsiness detection system offers a

promising solution for enhancing road safety by addressing

the critical issue of driver fatigue. Its non-intrusive nature,

real-time detection, high accuracy, dual-alert mechanism,

and seamless integration make it a valuable tool for

promoting safer driving practices and reducing the risk of

drowsy driving accidents.

IV-LITERATURE SURVEY

A variety of methodologies proposed by researchers for the

detection of drowsiness and blinking in recent years are:

4.1 Driver Drowsiness Detection [1]

The system consists of two main components: image

processing and drowsiness calculation. The image

processing component uses computer vision techniques to

detect and track the driver's eyes in real-time. The

drowsiness calculation component uses eye closure

duration, yawning frequency, and head nodding to calculate

the driver's drowsiness level. If the driver's drowsiness

level exceeds a certain threshold, an alarm will be generated

to alert the driver and prevent any potential accidents.

The image processing component is implemented using

Python, Open CV, and dlib libraries. The system

captures images from a camera mounted in front of the

driver and uses a Haar Cascade classifier to detect the

driver’s face. The dlib library is then used to detect and

track the driver's eyes in real-time by detecting the location

of the pupils in the eye region. The drowsiness calculation

component uses several metrics to calculate the driver's

drowsiness level. Eye closure duration is calculated by

measuring the time between consecutive eye blinks.

Yawning frequency is detected by monitoring the size of the

mouth opening. Head nodding is detected by tracking the

position of the head in the camera frame. These metrics are

combined using a weighted algorithm to calculate the

driver’s drowsiness level. If the driver's drowsiness level

exceeds a certain threshold, an alarm is generated to alert

the driver. The alarm can be in the form of an audible alarm

or a visual signal, such as a flashing light. This system also

logs the drowsiness level and the time of detection for

future analysis and evaluation.

This system provides a reliable and efficient solution to

detect and prevent driver drowsiness. The system can be

easily integrated with any vehicle and can potentially

save lives by preventing accidents caused by driver

drowsiness.

4.2 Real-Time Fatigue Detection System using OpenCV

and Deep Learning [2]

Nowadays, the Driver's safety in the car is one of the most

desired systems for avoiding accidents. The goal for the

paper is to ensure the security system. A system that can

check the Driver's condition for fatigue and alert the Driver

before it is too late is desired. In the proposed system, a

driver assistance system using a camera is used that will

focus on the open or closed state of the Driver's eyes by

monitoring the state of the eyes, Calculating the EAR ratio

continuously for each frame detection drowsiness is easy. In

this technique, this will detect the Driver's fatigue state and

alert the Driver using an alarm. Facial detection is achieved

through OpenCV face detection. The eye ball is monitored

for fatigue detection. The control unit controls every part in

this system; if fatigue is detected, the system will give the

alarm using the buzzer. Detection in real-time is the major

challenge in the field of accident prevention systems.

4.3 Detecting Driver Drowsiness Based on Sensors: A

Review [3]

Making an intoxicated driver operate a vehicle is unethical

and unsafe. As a result, to conduct their studies, researchers

have employed simulated environments. The key benefits of

employing simulators include easy data gathering, safety,

low cost, efficiency, and experimental control. The driving

simulators can be broadly categorized as follows: Mid-level

(Fixed-base) simulators with advanced imaging techniques,

a large projection screen, a realistic car, and possibly a

simple motion base; High-level (Motion-based) simulators

with typically a view close to 360° and an extensive moving

base; and Low-level simulators with a computer, a monitor,

https://doi.org/10.46335/IJIES.2023.8.10.2 e-ISSN: 2456-3463

Vol. 8, No. 10, 2023, PP. 55- 58

International Journal of Innovations in Engineering and Science, www.ijies.net

10

a realistic cockpit, a steering wheel, manual gear box, and

pedals (clutch, brake, and accelerator).

Steering Wheel Movement (SWM) is a commonly used

vehicle-based metric for determining the degree of driver

fatigue. It is assessed using a steering angle sensor. A

steering column-mounted angle sensor is used to measure

the driver's steering behaviour. When driving while sleepy,

there are less micro corrections made on the steering wheel

than when driving normally. Sleep-deprived drivers did

fewer steering wheel reversals than normal drivers,

according to research by Fairleigh and Graham. The

researchers only took into account little steering wheel

motions (between 0.5° and 5°), which are required to modify

the lateral position within the lane, in order to avoid the

influence of lane changes. Therefore, using small SWMs, it

is possible to assess the driver's level of drowsiness and, if

necessary, issue a warning. To produce fluctuations in the

lateral position and force the drivers to perform corrective

SWMs, light side breezes were applied along a curving road

in a simulated environment, pushing the automobile to the

right side of the road. SWMs are used by automakers like

Nissan and Renault, however they are only effective under

certain circumstances. This is due to the fact that it can only

operate dependably in specific conditions and is overly

reliant on the geometric features of the road and, to a lesser

degree, the kinetic properties of the vehicle.

4.4 Drowsiness Detection and Alert System: A Review

[4]

The author of this project created goggles/spectacles

equipped with IR sensors and a buzzer. The driver wears

this full setup. A lot more components are included in the

setup, including an Arduino UNO, a GSM SIM 800

module, two batteries, and two ON/OFF buttons that are

connected to separate batteries. Here, the microcontroller is

connected to the first battery, while the GSM module is

attached to the second. The way the whole system operates

is that, as soon as the driver puts on the goggles, infrared

sensors detect whether or not the eyes are closed. If they are

not, the system checks again, and so on, until the driver's

eyes are discovered to be closed. When the eyes are

discovered to be closed, the device performs a second

check, and if the eyes are again found to be closed, the red

LED and buzzer turn on and stay on for one minute before

turning off. Following a minute, a condition is established

whereby the driver is considered alert if the frequency is

greater than fifty, and alert if the frequency is less than fifty.

However, as soon as the driver is discovered to be sleepy,

the owner receives a notification from the GSM module that

says, "Driver is found drowsy." The same thing keeps

happening again.

To put it succinctly, the driver's eyes begin to blink for

longer than a second whenever they sense drowsiness. The

IR sensor detects this condition, and the buzzer sounds to

alert the driver and sends the owner an instant text message.

4.5 Facial features monitoring for real time drowsiness

detection [5]

To train the classifier that will identify the object, the

algorithm initially requires a large number of positive

images—that is, images with faces—and negative images—

that is, images without faces. Therefore, in addition to the

Haar feature-based classifiers, the cascaded Adaboost

classifier is used to identify the face region. After that, the

compensated image is divided into a variety of rectangle

areas that can be anywhere in the original image at any

scale or position. Haar-like feature is effective for real-time

face detection because of the variations in facial features.

These can be computed using the difference in the sum of

the pixel values within the rectangle. The Adaboost

algorithm will accept all face samples and reject non-face

samples of the images during this process.

4.6 Real time drowsiness detection using eye blink

monitoring [6]

Using the Harris corner detection algorithm, which detects

corners at the side and down curve of the eye lid, the image

is first converted to greyscale in this method. Following the

point-tracing process, a straight line will be drawn between

the top and bottom points. The midpoint will then be

connected to the lower point by the line's calculation. Now,

it will follow the same steps for every image, calculating the

'd' distance between the midpoint and the lower point to

determine the eye state. Ultimately, the computed distance

'd' is used to determine the eye state. The eye state is labeled

as "closed" if the distance is zero or nearly zero; otherwise,

it is labeled as "open." In order to determine whether the

person is feeling sleepy or not, they have also called for

intervals of time. This is accomplished by the average

person blinking for 100–400 milliseconds, or 0.1–0.4 of a

second. When the distance is zero or nearly zero, the

condition of the eyes is categorized as "closed," otherwise,

it is categorized as "open." In order to determine whether

the person is feeling sleepy or not, they have also called for

intervals of time. This is accomplished by the average

person blinking for 100–400 milliseconds, or 0.1–0.4 of a

second.

V-METHODOLOGY

5.1. Knowing Dataset

For the driver drowsiness detection system, the dataset is

comprised of two fundamental categories of images: open

https://doi.org/10.46335/IJIES.2023.8.10.2 e-ISSN: 2456-3463

Vol. 8, No. 10, 2023, PP. 55- 58

International Journal of Innovations in Engineering and Science, www.ijies.net

11

eyes and closed eyes. This dataset serves as a pivotal

component in training and validating the system's ability to

recognize and respond to drowsiness in drivers. The "open

eyes" images depict drivers with fully open, alert eyes,

while the "closed eyes" images capture moments when

drivers' eyes are partially or completely closed, signifying

drowsiness or fatigue.

The use of open and closed eyes images enables the system

to discern critical visual cues associated with drowsiness,

such as eyelid drooping or prolonged eye closure, which are

indicative of a driver's reduced attentiveness. These images

are crucial for teaching the machine learning model to

identify patterns and features that distinguish between an

alert and drowsy state. As the system progresses, it can

trigger warnings or interventions to prevent accidents by

detecting signs of drowsiness in real-time, helping to ensure

safer and more responsible driving behavior. This dataset

forms the foundation of the drowsiness detection system,

empowering it to enhance road safety and driver vigilance.

Table 4.1: Literature Survey

Title Author Faults Conclusion
Driver

Drowsiness

Detection
Sundram

Ohja, Ankita

Agrawal
Sensor

inaccuraci

es, false

alarms

Improved

system

accuracy and

reduced false

positives
Real-Time

Fatigue Detection

System using

OpenCV and

Deep Learning

K

Vijaychandr

a Reddy,

Sanjana

Gadalay

It is less

efficient.
Suggests to

develop more

efficient model

Detecting Driver

Drowsiness Based

on Sensors: A

Review

Arun

Sahayadhas

Steering

Wheel not

detectable

.

It is

Impractical.

Drowsiness

Detection and

Alert System: A

Review

Jyotsna

Gabhane

Hardware

malfuncti

ons, user

discomfor

t

Suggests more

robust hardware

design and cost

optimization

and user

comfort

Facial features

monitoring for

real time

drowsiness

detection

Manu B.N Limited

dataset,

slow

response

time

Recommends a

larger dataset

and faster

processing

algorithms

Real time

drowsiness

detection using

eye blink

monitoring

Amna

Rahman

Environm

ental

factors

Advocates for

better

adaptation to

environmental

conditions

The dataset consists of 50,000 images for each of the two

essential categories: open eyes and closed eyes. These

images are meticulously collected and manually cleaned to

ensure high data quality. The dataset is thoughtfully

organized, with images of open eyes stored in one folder

and images of closed eyes stored in another.

The large quantity of images in each category provides a

diverse and representative sample of real-world scenarios,

enhancing the system's ability to generalize and accurately

detect drowsiness in drivers across various conditions.

Manual cleaning of the images involves removing any

outliers, anomalies, or irrelevant data, guaranteeing the

reliability and integrity of the dataset.

By maintaining separate folders for open and closed eyes

images, the dataset is organized in a manner that facilitates

efficient data management and access for the training and

evaluation phases of the system. This careful curation and

organization of the dataset, alongside its substantial size,

plays a crucial role in the system's capacity to recognize the

visual cues associated with drowsiness, thereby contributing

to the overall success and safety of the driver drowsiness

detection system.

Additional dataset is also used for the validation purpose.

Images in this dataset are completely different than the

training dataset. This dataset will be used for the validation

purpose after the model is been trained after each epoch.

The directory structure of this dataset is similar as that of

training dataset. There are 5000 images of each category:

open eyes and close eyes. [7]

5.2 Pre-processing Dataset

5.5.1. 5.5.1 Initializing Paths

In order to preprocess the images in the dataset, the path

needs to be specified from where the images will be

accessed. So following variables are initialized specifying

the path of the dataset.

dataset_directory: This variable is intended to store the

path to the directory containing the training dataset.

validation_directory: Similar to dataset directory, this

variable is meant to store the path to the directory

containing the validation dataset.

5.5.2 preprocessing_image() function

This function is designed to process an input image before it

is fed into the neural network. It first converts the image to

grayscale using OpenCV's cv.cvtColor function with the

https://doi.org/10.46335/IJIES.2023.8.10.2 e-ISSN: 2456-3463

Vol. 8, No. 10, 2023, PP. 55- 58

International Journal of Innovations in Engineering and Science, www.ijies.net

12

COLOR_BGR2GRAY conversion. This is a common step

in preprocessing to reduce the channel dimensionality of the

image, making it easier to process. Subsequently, the image

is converted back to RGB using cv.cvtColor with

COLOR_GRAY2RGB. The reason for this conversion is to

ensure that the input to the neural network has the same

number of channels as expected. Finally, the image is

resized to a target size using cv.resize. The resulting

processed image is then returned. This preprocessing

function is crucial for standardizing the input data and

ensuring consistency in the format of images presented to

the neural network.

5.5.3 Data Augmentation

An ImageDataGenerator object named datagen is

instantiated. This object is part of Keras's image

preprocessing utilities and is designed for real-time data

augmentation during model training. The rescale parameter

normalizes the pixel values of the images to the range [0, 1].

Various augmentation techniques are applied, including

rotation (rotation_range), width and height shifting

(width_shift_range and height_shift_range), shearing

(shear_range), zooming (zoom_range), and horizontal

flipping (horizontal_flip). The fill_mode parameter is set to

'nearest', indicating the strategy for filling in newly created

pixels during data augmentation. Additionally, the

preprocessing_function parameter is set to the previously

defined preprocess_image function. This means that each

image generated during training will undergo the specified

augmentations as well as the custom preprocessing defined

in preprocess_image.

5.5.4 Data Generators

In next part, two data generators (data_generator and

validation_generator) are created using the

flow_from_directory method of the ImageDataGenerator

class. These generators retrieve batches of images from

specified directories (dataset_directory and

validation_directory). The target_size parameter ensures

that all images are resized to a consistent size for input to

the neural network. The batch_size parameter determines

the number of images in each batch. The class_mode is set

to 'binary', indicating that the classification task is binary

(two classes). For the training data generator

(data_generator), the shuffle parameter is set to True to

randomize the order of data during training, enhancing the

model's learning. Conversely, the validation data generator

(validation_generator) has shuffle set to False to ensure

consistency in validation performance evaluation.

5.3 Mobile Net V1 Architecture

5.3.1 Overview of The Architecture

Mobile Net, often referred to as MobileNetV1, is a

groundbreaking family of convolutional neural networks

designed to address the computational and memory

constraints of mobile and embedded devices. Introduced by

Google researchers in 2017, MobileNetV1 is celebrated for

its exceptional efficiency while delivering robust

performance in image classification tasks. At the heart of

MobileNetV1's efficiency is the innovative use of depth

wise separable convolutions, which significantly reduces

the model's size and computational requirements. This

architectural design is complemented by two crucial hyper

parameters: the width multiplier and the resolution scale,

allowing for customization of the model to match specific

resource constraints. MobileNetV1 has found widespread

application in mobile vision tasks, such as image

classification, object detection, and semantic segmentation,

and has served as a foundation for subsequent versions like

MobileNetV2 and MobileNetV3, which further enhance the

trade-off between model accuracy and efficiency. This

pioneering neural network family has played a pivotal role

in enabling deep learning on resource-constrained devices,

empowering the development of lightweight yet powerful

computer vision solutions for mobile and embedded

systems [8]. Here are some key features and details about

MobileNetV1:

1. Efficiency: MobileNetV1 is specifically designed to be

computationally efficient, making it well-suited for

deployment on mobile devices and embedded systems.

It achieves this efficiency by using depthwise separable

convolutions.

2. Depthwise Separable Convolution: MobileNetV1

uses a novel type of convolution operation called

depthwise separable convolution. This operation splits

the standard convolution into two separate layers:

depthwise convolution and pointwise convolution. This

significantly reduces the number of parameters and

computations compared to traditional convolutions.

3. Architecture: MobileNetV1 consists of multiple

layers, including depthwise separable convolution

layers, followed by pointwise convolution layers. It

typically ends with global average pooling and a fully

connected layer for classification.

4. Hyper parameter Tuning: MobileNetV1 allows for

hyperparameter tuning to balance the trade-off between

model size and accuracy. You can choose different

model variants by adjusting hyper parameters like the

width multiplier and resolution scale.

https://doi.org/10.46335/IJIES.2023.8.10.2 e-ISSN: 2456-3463

Vol. 8, No. 10, 2023, PP. 55- 58

International Journal of Innovations in Engineering and Science, www.ijies.net

13

5. Width Multiplier: The width multiplier parameter can

be adjusted to scale the model's width (number of

channels) while keeping the depth (number of layers)

constant. This parameter allows you to customize the

model's size and computational requirements.

6. Resolution Scale: The resolution scale parameter

allows you to resize the input images, which can also

impact the model's size and computational demands. It

is especially useful for adapting the model to the

specific requirements of a mobile application

7. Retrained Models: Retrained MobileNetV1 models are

available, which can be fine-tuned for specific tasks or

used as feature extractors in transfer learning.

8. Applications: MobileNetV1 is commonly used in

various mobile vision applications, including image

classification, object detection, and semantic

segmentation. It strikes a balance between accuracy and

resource constraints, making it suitable for real-time

inference on mobile devices.

9. Successor Models: MobileNetV1 has been succeeded

by MobileNetV2 and MobileNetV3, which introduced

improvements in terms of accuracy and efficiency.

These subsequent versions build upon the foundations

laid by MobileNetV1.

5.3.2 Architecture

Figure 5.3.2.1: Depthwise Separable convolutions with

Depthwise and Pointwise layers followed by batchnorm and

ReLU. [8]

The above flow consists of a 3x3 depthwise separable

convolution followed by batch normalization (BN) and

rectified linear unit (ReLU) activation, and then a 1x1

pointwise convolution, again followed by BN and ReLU.

The 3x3 depthwise convolution efficiently captures spatial

dependencies in the input data by applying separate

convolutions to each channel, reducing computational cost.

Batch normalization normalizes the output, aiding

convergence and generalization, and ReLU introduces non-

linearity. The subsequent 1x1 convolution projects the

depth of the feature space, allowing for a richer

representation. This pattern is repeated throughout the

MobileNet architecture, maintaining lightweight and

efficient characteristics, except for the first layer which

typically employs a regular convolution to capture broader

patterns in the input data [8]. Below is the full architecture

of mobileNetV1:

Table 5.3.2.1: Architecture of MobileNetV1 [8]

TYPE STRI

DE

KERNEL

SHAPE

INPUT

SIZE

OUTPUT

SIZE

Convoluti
on

2 3 × 3 × 3 × 32
224 × 224

× 3
112 × 112 ×

32

Conv pw 1 1 × 1 × 32 × 64
112 × 112 ×

32

112 × 112 ×

64

Conv dw 2 3 × 3 × 64
112 × 112 ×

64
56 × 56 × 64

Conv pw 1 1 × 1 × 64 × 128
56 × 56 ×

64

56 × 56 ×

128

Conv dw 1 3 × 3 × 128
56 × 56 ×

128
56 × 56 ×

128

Conv pw 1 1 × 1 × 128 × 128
56 × 56 ×

128

56 × 56 ×

128

Conv dw 2 3 × 3 × 128
56 × 56 ×

128

56 × 56 ×

128

Conv pw 1 1 × 1 × 128 × 256
56 × 56 ×

128

28 × 28 ×

256

Conv dw 1 3 × 3 × 256
28 × 28 ×

256
28 × 28 ×

256

Conv pw 1 1 × 1 × 256 × 256
28 × 28 ×

256

28 × 28 ×

256

Conv dw 2 3 × 3 × 256
28 × 28 ×

256

14 × 14 ×

256

Conv pw 1 1 × 1 × 256 × 512
14 × 14 ×

256

14 × 14 ×

512

Conv dw 1 3 × 3 × 512
14 × 14 ×

512

14 × 14 ×

512

Conv pw 1 1 × 1 × 512 × 512
14 × 14 ×

512

14 × 14 ×

512

Conv dw 1 3 × 3 × 512
14 × 14 ×

512

14 × 14 ×

512

Conv pw 1 1 × 1 × 512 × 512
14 × 14 ×

512

14 × 14 ×

512

Conv dw 1 3 × 3 × 512
14 × 14 ×

512

14 × 14 ×

512

Conv pw 1 1 × 1 × 512 × 512
14 × 14 ×

512

14 × 14 ×

512

Conv dw 1 3 × 3 × 512
14 × 14 ×

512

14 × 14 ×

512

Conv pw 1 1 × 1 × 512 × 512
14 × 14 ×

512

14 × 14 ×

512

Conv dw 1 3 × 3 × 512
14 × 14 ×

512

14 × 14 ×

512

Conv pw 1 1 × 1 × 512 × 512
14 × 14 ×

512

14 × 14 ×

512

Conv dw 2 3 × 3 × 512
14 × 14 ×

512
7 × 7 × 512

Conv pw 1
1 × 1 × 512 ×

1024
7 × 7 × 512 7 × 7 × 1024

Conv dw 2 3 × 3 × 1024
7 × 7 ×

1024
7 × 7 × 1024

3x3 Depthwise Conv

BN

ReLU

1x1 Conv

BN

ReLU

https://doi.org/10.46335/IJIES.2023.8.10.2 e-ISSN: 2456-3463

Vol. 8, No. 10, 2023, PP. 55- 58

International Journal of Innovations in Engineering and Science, www.ijies.net

14

Conv pw 1
1 × 1 × 1024 ×

1024
7 × 7 ×
1024

7 × 7 × 1024

Avg Pool 1 Pool 7 × 7
7 × 7 ×

1024
1 × 1 × 1024

FC 1 1024 x 1000
1 x 1 x
1024

1 x 1 x 1000

Softmax 1 Classifier
1 x 1 x

1000
-

5.4 Modification in MobileNet (New Architecture)

Table 5.4.1: Modified Architecture of MobileNetV1

TYPE
STR

IDE

KERNEL

SHAPE

INPUT

SIZE

OUTPU

T SIZE

Convolut

ion
2 3 × 3 × 3 × 32

224 ×

224 × 3

112 ×

112 × 32

Conv pw 1 1 × 1 × 32 × 64
112 ×

112 × 32

112 ×

112 × 64

Conv dw 2 3 × 3 × 64
112 ×

112 × 64

56 × 56

× 64

Conv pw 1 1 × 1 × 64 × 128
56 × 56

× 64

56 × 56

× 128

Conv dw 1 3 × 3 × 128
56 × 56

× 128

56 × 56

× 128

Conv pw 1
1 × 1 × 128 ×

128

56 × 56

× 128

56 × 56

× 128

Conv dw 2 3 × 3 × 128
56 × 56

× 128

56 × 56

× 128

Conv pw 1
1 × 1 × 128 ×

256

56 × 56

× 128

28 × 28

× 256

Conv dw 1 3 × 3 × 256
28 × 28

× 256

28 × 28

× 256

Conv pw 1
1 × 1 × 256 ×

256

28 × 28

× 256

28 × 28

× 256

Conv dw 2 3 × 3 × 256
28 × 28

× 256

14 × 14

× 256

Conv pw 1
1 × 1 × 256 ×

512

14 × 14

× 256

14 × 14

× 512

Conv dw 1 3 × 3 × 512
14 × 14

× 512

14 × 14

× 512

Conv pw 1
1 × 1 × 512 ×

512

14 × 14

× 512

14 × 14

× 512

Conv dw 1 3 × 3 × 512
14 × 14

× 512

14 × 14

× 512

Conv pw 1
1 × 1 × 512 ×

512

14 × 14

× 512

14 × 14

× 512

Conv dw 1 3 × 3 × 512
14 × 14

× 512

14 × 14

× 512

Conv pw 1
1 × 1 × 512 ×

512

14 × 14

× 512

14 × 14

× 512

Conv dw 1 3 × 3 × 512
14 × 14

× 512

14 × 14

× 512

Conv pw 1
1 × 1 × 512 ×

512

14 × 14

× 512

14 × 14

× 512

Conv dw 1 3 × 3 × 512
14 × 14

× 512

14 × 14

× 512

Conv pw 1
1 × 1 × 512 ×

512

14 × 14

× 512

14 × 14

× 512

Conv dw 2 3 × 3 × 512
14 × 14

× 512

7 × 7 ×

512

Conv pw 1
1 × 1 × 512 ×

1024

7 × 7 ×

512

7 × 7 ×

1024

Conv dw 2 3 × 3 × 1024
7 × 7 ×

1024

7 × 7 ×

1024

Conv pw 1
1 × 1 × 1024 ×

1024

7 × 7 ×

1024

7 × 7 ×

1024

Avg Pool 1 Pool 7 × 7
7 × 7 ×

1024

1 × 1 ×

1024

Flattern - -
1 × 1 ×

1024
1024

Dense - - 1024 1

Activatio

n
- - 1 1

The architecture begins with a standard convolutional layer

with a 3x3 kernel and 32 output channels, reducing the

input image size from 224x224 to 112x112. Following this,

there's a depthwise separable convolution, maintaining the

spatial dimensions at 112x112. Then, a pointwise

convolution is applied to expand the number of output

channels to 64. Subsequently, another depthwise separable

convolution with a stride of 2 reduces the spatial

dimensions to 56x56. Pointwise convolutions increment the

output channels to 128, and this pattern continues with

alternating depthwise separable and pointwise convolutions.

This sequence of depthwise and pointwise convolutions

effectively captures features and reduces spatial dimensions.

The process culminates with global average pooling,

reducing the spatial dimensions to 1x1. Following that, a

flatten layer transforms the 1x1x1024 feature map into a 1D

vector of size 1024. This vector is connected to a dense

layer that serves as the final layer before classification, with

1024 input nodes and a single output node, typically used

for binary classification. An activation layer applies a

sigmoid function to the dense layer's output, producing the

final prediction probability. This architecture is well-suited

for image classification tasks, and the detailed table helps

clarify the transformation of data at each stage of the

network.

Example

Consider that an image of size 224x224x3 where 224 is the

height and width of the image and 3 is the input channels (3

is for RGB). (The MobileNet architecture by default takes

the image of size 224x244. So the images in dataset is

resized to 244x244).

1. Convolution Layer (Conv): The journey begins with a

conventional convolutional layer. The input image, with

its 3 color channels and dimensions of 244x244,

undergoes a convolution operation using a set of

3x3x3x32 filters. This initial operation aims to extract

various features from the image. With a stride of 2, the

https://doi.org/10.46335/IJIES.2023.8.10.2 e-ISSN: 2456-3463

Vol. 8, No. 10, 2023, PP. 55- 58

International Journal of Innovations in Engineering and Science, www.ijies.net

15

spatial dimensions are reduced, resulting in a

112x112x32 feature map.

2. Depthwise Separable Convolution Layer (Conv dw):

Following the first convolution, a depthwise separable

convolution is applied. This layer comprises a depthwise

convolution followed by a pointwise convolution. The

input dimensions, 112x112x32, remain unchanged as the

depthwise convolution maintains spatial size, while the

pointwise convolution adjusts the number of channels.

The aim here is to enhance feature extraction.

3. Pointwise Convolution Layer (Conv pw): In the next

step, a pointwise convolution is employed to increase

the number of output channels from 32 to 64. This

operation injects further complexity into the features

extracted in the previous layers without altering the

spatial dimensions, yielding a 112x112x64 feature map.

4. Depthwise Separable Convolution Layer (Conv dw):

Another depthwise separable convolution follows, but

this time with a stride of 2. As a result, the spatial

dimensions are reduced to 56x56 while preserving and

improving the feature set within the 64 channels.

5. Pointwise Convolution Layer (Conv pw): To further

enrich the extracted features, a pointwise convolution is

applied, increasing the number of output channels from

6. 64 to 128. This step increases the depth of features

without impacting the spatial dimensions, resulting in a

56x56x128 feature map.

7. Repeating Depthwise Separable and Pointwise

Convolution Layers: The architectural pattern of

depthwise separable convolutions and pointwise

convolutions persists, each with distinct kernel sizes and

strides. Each depthwise separable convolution reduces

spatial dimensions, and the subsequent pointwise

convolution adjusts channel numbers. This sequential

process is crucial for capturing intricate features within

the data.

8. Global Average Pooling (Avg Pool): At this stage, the

network applies global average pooling, a critical step in

feature reduction. This operation computes the average

values across the spatial dimensions, effectively

compressing the output into a 1x1x1024 feature map.

The purpose of this step is to prepare the features for

final classification.

9. Flatten Layer (Flatten): The 1x1x1024 feature map is

then flattened into a 1D vector comprising 1024

elements. This vector now serves as the input for the

next layer.

10. Dense Layer (Dense): The flattened vector enters a

dense layer with 1024 input nodes and a single output

node. This dense layer is commonly used for binary

classification tasks. The output represents a numerical

value, a crucial intermediary step towards making the

final classification decision.

11. Activation Layer (Activation): To convert the output

from the dense layer into a probability, an activation

layer applies a sigmoid function. This function maps the

value to a range between 0 and 1, making it suitable for

binary classification. The final output reflects the

probability of the image belonging to a specific class.

5.5 Model Compilation and Training

5.6.5 Model Compilation:

The model compilation stage is crucial for defining the

training objectives, optimizing strategy, and evaluation

metrics tailored to the drowsiness detection task.

Loss Function (loss='binary_crossentropy'): Binary

crossentropy is aptly chosen as the loss function, given the

binary nature of the classification task. It quantifies the

dissimilarity between the predicted probability distribution

of eye states and the actual binary labels, providing a clear

signal for the model to minimize the discrepancy.

Optimizer (optimizer='adam'): The Adam optimizer is

employed due to its effectiveness in adjusting model

weights efficiently. Its adaptive learning rate mechanism is

beneficial for tasks with varying complexities, such as those

encountered in real-time drowsiness detection scenarios.

Metrics (metrics=['accuracy']): Accuracy is a crucial metric

for this application, as correctly identifying whether the

driver's eyes are open or closed is paramount for accurate

drowsiness detection. Monitoring accuracy during training

provides insight into the model's ability to make correct

predictions, which is directly relevant to the model's real-

world performance.

5.6.6 Model Training:

The training process is designed to enable the model to

learn the patterns indicative of open or closed eyes,

leveraging a combination of data augmentation and transfer

learning.

https://doi.org/10.46335/IJIES.2023.8.10.2 e-ISSN: 2456-3463

Vol. 8, No. 10, 2023, PP. 55- 58

International Journal of Innovations in Engineering and Science, www.ijies.net

16

 Training Data (data_generator): The

data_generator is configured to dynamically augment

the training dataset. Data augmentation is particularly

beneficial for tasks like drowsiness detection, where

variations in lighting conditions, head poses, or facial

expressions can be present. Augmenting the dataset

with variations in eye states enhances the model's

ability to generalize to diverse scenarios.

 Steps per Epoch: The number of steps per epoch is

determined by the total number of training samples

divided by the batch size. Each step involves

processing a batch of augmented images and updating

the model's weights. In the context of drowsiness

detection, this iterative learning process helps the

model adapt to different driver conditions.

 Epochs (epochs=8): Training is performed over

multiple epochs to allow the model to iteratively refine

its parameters. This is crucial for capturing nuanced

patterns associated with eye states and ensuring the

model generalizes well to various scenarios

encountered during driver monitoring.

 Validation Data (validation_data=validation

generator): The validation_generator provides a

separate set of images that the model has not seen

during training. Evaluating the model on this validation

set allows for assessing its generalization performance.

For drowsiness detection, it ensures that the model can

reliably identify open and closed eyes in new instances,

crucial for real-world applicability.

5.6.7 Training Process:

The steps representing the flow of training of model

from initial state to the state of saving history is given

below:

1. Initialization:

 The model's weights are initialized based on the

architecture specified during model creation.

 The Adam optimizer is initialized with its parameters,

including learning rates and momentum coefficients.

2. Data Augmentation:

 For each training batch, the data generator

dynamically augments the images. This includes

random rotations, shifts, shearing, zooming, and

horizontal flips.

 Data augmentation introduces variability into the

training set, making the model more resilient to

diverse real-world conditions.

3. Forward Pass:

 Augmented images from the current batch are fed

into the model for a forward pass.

 The model processes each image through its layers,

generating predictions for whether the eyes are open

or closed.

4. Loss Computation:

 The binary crossentropy loss is computed by

comparing the model's predictions with the actual

labels (ground truth) of eye states in the training

batch.

 The loss quantifies the difference between predicted

probabilities and true labels, providing a measure of

how well the model is performing on the current

batch.

5. Backward Pass (Backpropagation):

 Gradients of the loss with respect to the model's

parameters (weights) are calculated during

backpropagation.

 These gradients represent the direction and

magnitude of the adjustments needed to minimize the

loss.

6. Optimizer Update:

 The Adam optimizer utilizes the gradients to update

the model's weights. The adaptive learning rate

ensures efficient adjustments, especially in the

presence of varying gradients across different

parameters.

7. Iterative Process:

 Steps 2-6 are repeated for each batch in the training

set. The model processes multiple batches per epoch,

and each batch contributes to the overall adjustment

of the model's parameters.

 This iterative process allows the model to learn

progressively complex representations from the

training data, capturing features associated with open

and closed eyes.

8. Epoch Progression:

 As the model goes through each batch in the training

set, it refines its parameters to improve accuracy and

reduce the loss.

 The model continues this process for the specified

number of epochs, iterating over the entire training

dataset multiple times.

9. Validation Evaluation:

 After completing each epoch, the model is evaluated

on a separate validation dataset.

 The validation set provides an unbiased assessment

of the model's generalization performance, indicating

how well it can predict eye states on unseen data.

10. Training History:

 The training history, stored in the history variable,

records metrics such as training and validation loss,

training and validation accuracy, and any other

specified metrics.

 Analyzing the training history over epochs helps in

understanding the model's learning dynamics and

potential areas for improvement or adjustments in the

https://doi.org/10.46335/IJIES.2023.8.10.2 e-ISSN: 2456-3463

Vol. 8, No. 10, 2023, PP. 55- 58

International Journal of Innovations in Engineering and Science, www.ijies.net

17

training process.

5.6 Hardware Setup

5.6.1. Circuit Diagram

Fig 5.6.1.1: Alarm System Setup Using Arduino [9]

In the given circuit diagram, the ‘GND’ pin of LCD is

connected to ‘GND’ pin of Arduino. ‘VCC’ pin of LCD is

connected to ‘5V’ pin of Arduino. Similarly, backlight of

LCD i.e. LED’s (used in LCD) cathode and anode is

connected to ‘GND’ and ‘5V’ pin of Arduino respectively.

‘V0’ pin of LCD is connected to 11 no. pin of Arduino. It is

used to adjust the brightness using pulse-width modulation

(PWM) which is set 60. ‘RW’ pin of LCD is connected to

‘GND’ of Arduino since data will not be read from the

LCD. ‘RS’ and ‘E’ pin of LCD is connected to 2 and 3 no.

pin of Arduino respectively. ‘DB4’, ‘DB5’, ‘DB6’ and

‘DB7’ pin of LCD is connected to 4, 5, 6, and 7 no. pin of

Arduino respectively. Buzzer is operated on 8 no. pin of

Arduino. LED is operated on 9 no. pin of Arduino.

5.6.2. Code Implementation

In the loop function, the system continuously listens for

incoming data on the serial port using Serial.available().

When data is received, the system reads the status and

responds accordingly. If the received status is 'a', implying

that the driver is drowsy and needs to wake up, the LCD

displays a prompt to wake up, the buzzer is activated, and

an LED is turned on for a brief duration, creating a

noticeable alert. On the other hand, if the received status is

'b', indicating that the driver is alert and all is well, the LCD

displays an "All Ok" message, and both the buzzer and LED

are turned off after a short delay. The clearSerialBuffer()

function is called to ensure any residual data in the serial

buffer is cleared, preventing interference with subsequent

communications. This loop continues to run, effectively

monitoring the serial port for incoming instructions,

allowing the system to respond in real-time to changes in

the driver's alertness.

5.7 Integrating Trained Model and Hardware

To integrate the trained model and hardware setup, a python

script is developed which will use the trained model to

generate the input for the hardware setup and send it to the

Arduino. Arduino, on the basis of input given will respond

as mentioned earlier. The script utilizes the OpenCV

library for face and eye detection, TensorFlow for loading a

pre-trained deep learning model, and the Serial library for

communication with an Arduino connected to the COM3

port.

The code begins by establishing a serial connection with the

Arduino board. It then loads a pre-trained deep learning

model for drowsiness detection, which is the pre-trained

model. The script initializes cascade classifiers for face and

eye detection using Haar cascades. The face detection is

performed with lower parameters to enhance detection in

less clear conditions. The webcam feed is captured using

OpenCV's VideoCapture, and the program continuously

processes frames from the webcam in a loop.

The script first converts each frame to grayscale to simplify

processing. It then uses the face cascade classifier to detect

faces in the frame. The largest detected face is selected, and

its region of interest (ROI) is extracted. Within this ROI, the

script uses the eye cascade classifier to detect eyes.

If eyes are detected, the region of the eyes is extracted and

preprocessed for input into the pre-trained model. The pre-

processing involves resizing the eye region to 224x224

pixels, normalizing pixel values to the range [0, 1], and

expanding the dimensions to match the model's input shape.

The pre-processed image is fed into the loaded model, and

the predictions are obtained. If the prediction score for

closed eyes is above a certain threshold (0.85 in this case),

the script sends the status 'b' (indicating open eyes) to the

Arduino via serial communication. If the prediction

indicates closed eyes, a counter is incremented, and if the

counter exceeds a certain threshold (3 in this case), the

status 'a' (indicating closed eyes) is sent to the Arduino.

The script then updates the display frame with the detected

status ('Open eyes' or 'Closed eyes') and visual cues. The

frame is shown in an OpenCV window titled 'Drowsiness

Detection'. The script exits when the 'q' key is pressed. To

run this script, first connect the hardware setup to the

system and load the code into the Arduino, which makes it

active. Then run this python script.

https://doi.org/10.46335/IJIES.2023.8.10.2 e-ISSN: 2456-3463

Vol. 8, No. 10, 2023, PP. 55- 58

International Journal of Innovations in Engineering and Science, www.ijies.net

18

VI -RESULT

Figure 6.1: Initial Hardware

Figure 6.2: Open Eyes Detected

Figure 6.3: Hardware during Open Eyes Detected

Figure 6.4: Closed Eyes Detected

Figure 6.5: Hardware when Closed Eyes Detected

VII-CONCLUSION

In conclusion, the development and evaluation of the Driver

Drowsiness Detection System mark a significant stride

towards advancing road safety and prioritizing driver well-

being. The comprehensive analysis of both hardware and

software components, coupled with the exploration of

functional and non-functional requirements, underscore the

system's robustness and practicality.

The advantages offered by the system, including accident

prevention, enhanced road safety, and real-time monitoring,

position it as a valuable tool in mitigating the risks

associated with drowsy driving. Moreover, the system's

integration potential with other safety features and its

adaptability to various vehicle types and transportation

scenarios enhance its versatility.

Additionally, the emphasis on feasibility and economic

viability, while deferring the use of night vision cameras to

future iterations, reflects a thoughtful approach to project

constraints and scalability.

As the system evolves, the outlined future scope introduces

exciting possibilities, from advanced behavioural

monitoring to customizable alert levels and integration with

machine learning for predictive capabilities. These

advancements position the Driver Drowsiness Detection

System not only as a preventive measure against accidents

but also as a proactive solution that evolves with the ever-

changing landscape of driver safety.

In essence, the Driver Drowsiness Detection System, with

its successful training outcomes and promising potential,

stands as a testament to the commitment to road safety,

ushering in a new era where technology plays a pivotal role

in safeguarding lives on the road.

FUTURE SCOPE

1) Advanced Behavioral Monitoring:

Future iterations can extend beyond monitoring eyelid

movement, incorporating advanced behavioral cues such as

yawning, head nodding, and facial expressions. This

comprehensive approach will allow the system to gauge

drowsiness levels more accurately.

2) Customizable Alert Levels:
The system's future development could include

customizable alert levels based on individual driver

preferences and habits. This would enable a personalized

approach, where drivers can set the system to provide

warnings according to their unique drowsiness thresholds.

3) Time-Dependent Monitoring:
Time-dependent monitoring can be introduced, allowing the

detection system to adapt its sensitivity based on the time of

day. For instance, during peak drowsiness hours, the system

https://doi.org/10.46335/IJIES.2023.8.10.2 e-ISSN: 2456-3463

Vol. 8, No. 10, 2023, PP. 55- 58

International Journal of Innovations in Engineering and Science, www.ijies.net

19

could be more vigilant and issue alerts at lower drowsiness

levels, enhancing safety during high-risk periods.

4) Usage Patterns Analysis:
In future, a feature for analyzing usage patterns over time is

possible to implement. Thus, the system will be able to

identify specific hours or conditions when drowsiness levels

are consistently high, providing valuable insights for both

drivers and fleet managers.

5) Integration of Night Vision Cameras:

While not currently implemented due to cost constraints, the

future could see the incorporation of night vision cameras.

This enhancement would significantly improve the system's

accuracy during low-light conditions, ensuring robust

drowsiness detection regardless of the time of day.

6) Cloud Connectivity:

The overall project can consider integrating cloud

connectivity for real-time data analysis and remote

monitoring. This would enable centralized tracking of

multiple vehicles, providing valuable data for research and

fleet management.

7) Enhanced User Interface:

If more customizations are needed in the detection system

alone, like the customizable audio buzzer, an intuitive,

customizable and informative user interface can be

developed, possibly incorporating feedback mechanisms

and performance analytics. A user-friendly interface can

enhance user engagement and encourage proactive

drowsiness management.

8) Collaboration with Vehicle Manufacturers:

This takes a step further in the application and

implementation of the overall Driver Drowsiness Detection

System. Collaboration opportunities with vehicle

manufacturers to integrate the drowsiness detection system

as a built-in feature in new vehicle models, may contribute

to widespread adoption.

These future enhancements aim to not only refine the

detection system's accuracy and effectiveness, but also pave

the way for broader applications and industry collaboration.

REFERENCES

[1] Sundram Ojha, Syed Ali Asim, Ankita Agrawal,

“Driver Drowsiness Detection”, International

Journal of Scientific Research in Engineering and

Management, Volume 07, Issue 05, ISSN 2582-3930,

Pg 2 – 4, May 2023.

[2] K Vijaychandra Reddy, Sanjana Gadalay, “Real-

Time Fatigue Detection System using OpenCV and

Deep Learning”, International Research Journal of

Engineering and Technology, Volume 08, Issue 11,

ISSN 2395-0056, Pg 806 – 809, Nov 2021.

[3] Arun Sahayadhas, Kenneth Sundaraj and

Murugappan Murugappan, “Detecting Driver

Drowsiness Based on Sensors: A Review”, Sensors

Open Access Journal, volume 01, Issue 07, ISSN

1424-8220, Pg 05 – 11, Dec 2012.

[4] Jyotsna Gabhane, Dhanashri Dixit, Pranali Mankar,

Ruchika Kamble, Sayantani Gupta, “Drowsiness

Detection and Alert System: A Review”,

International Journal for Research in Applied

Science & Engineering Technology, Volume 6, Issue

IV, ISSN 2321-9653, Pg 237 – 238, April 2018.

[5] Manu B.N, "Facial Features Monitoring for Real

Time Drowsiness Detection", 2016 12th

International Conference on Innovations in

Information Technology (IIT), Issue 20, Pg 79 – 81,

Mar 2017.

[6] Amna Rahman "Real Time Drowsiness Detection

using Eye Blink Monitoring", Department of

Software Engineering Fatima Jinnah Women

University 2015 National Software Engineering

Conference (NSEC 2015).

[7] Eyes dataset: http://mrl.cs.vsb.cz/eyedataset

[8] Andrew G. Howard, Menglong Zhu, Bo Chen,

Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,

Marco Andreetto, Hartwig Adam, “MobileNets:

Efficient Convolutional Neural Networks for Mobile

Vision Applications”, IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), April 2017.

[9] Hardware circuit diagram on TinkerCad:

https://www.tinkercad.com/things/7xZNDnzC1wN-

driver-drowsiness-detection-system

