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Abstract-- The proposed paper aims to develop a 

nonintrusive real-time fatigue detection system, with a 

specific emphasis on long-distance drivers. This system 

employs camera technology to capture images continuously 

and assesses the driver's eyes through a specified 

algorithm. The algorithm focuses on identifying frames with 

closed eyes as indicative of fatigue. Upon detecting a closed 

eyes frame, a counter is initiated, incrementing with each 

subsequent identification. Once the counter surpasses a 

predefined threshold, an alert is triggered. Conversely, if 

open eyes are detected, the counter resets to zero. The 

system incorporates machine learning algorithms, ensuring 

robust performance across various driving conditions. The 

algorithm leverages a diverse dataset to refine its ability to 

discern subtle signs of fatigue, making it adept at detecting 

nuanced patterns indicative of drowsiness. This dynamic 

learning capability positions the system as an intelligent 

and evolving solution, capable of addressing the evolving 

challenges associated with driver fatigue. As a result, the 

proposed project not only aligns with current safety 

standards but also anticipates future advancements, 

contributing to a safer and more secure driving 

environment. 

Keywords: Fatigue Detection System, Open CV, 

Convolutional Neural Network (CNN), Driver Drowsiness, 

Face Detection. 

I-INTRODUCTION 

1.1 Problem Definition  

Driver drowsiness poses a critical threat to road safety, 

necessitating the development of an effective alert system 

specifically designed for four-wheeled vehicles. The current 

landscape relies heavily on wearable devices that utilize 

vibrations to alert drivers, yet these solutions are marred by 

inherent limitations, including user irritation and the 

inconvenience of having to wear them. This research 

addresses these shortcomings and endeavours to create a 

non-intrusive drowsiness detection system tailored for all 

drivers of four-wheelers. 

The proposed system seeks to leverage deep learning 

models integrated with cameras, LEDs, buzzers, and LCDs 

to detect signs of drowsiness, such as closed eyes or the 

onset of sleep. Unlike existing wearable, this system aims to 

provide real-time alerts without requiring the driver to wear 

any additional devices. This approach not only enhances 

user comfort but also expands the reach of the solution to a 

wider demographic of drivers. 

However, implementing an efficient drowsiness detection 

system using these components poses several challenges, 

most notably the need to minimize false alarms. False alerts 
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can erode user trust in the system and may lead to disregard 

or disuse. This research focuses on refining the deep 

learning model to achieve a high level of accuracy in 

distinguishing between genuine drowsiness indicators and 

normal variations in driver behavior. By addressing this 

challenge, the system aims to become a reliable and non-

intrusive tool in enhancing road safety. 

Additionally, the project recognizes the importance of real-

world applicability. Testing scenarios will be diverse, 

encompassing various driving conditions and environmental 

factors, to ensure the robustness and adaptability of the 

system. This research aims to contribute to the advancement 

of drowsiness detection technology, not only by introducing 

a novel and non-intrusive alert system but also by 

addressing the critical issue of minimizing false alarms, 

thereby promoting a safer driving experience for all. 

 

1.2  Motivation 

Road safety has emerged as a critical global concern, with 

traffic accidents claiming the lives of millions annually. 

Among the various factors contributing to road accidents, 

driver drowsiness stands out as a significant and often 

underestimated threat. Drowsiness-related incidents 

account for an estimated 20% of all road accidents 

worldwide, with this figure rising to as high as 50% on 

certain roads. The consequences of drowsy driving can be 

devastating, leading to fatalities, injuries, and substantial 

property damage. 

The Samruddhi Mahamarg, a newly constructed 

expressway in Maharashtra, India, has witnessed a 

concerning rise in accidents attributed to driver drowsiness. 

This expressway, with its long stretches of highway and 

high speeds, presents a particularly dangerous environment 

for drowsy drivers. The monotonous nature of long-

distance driving and the reduced alertness associated with 

fatigue can significantly impair a driver's ability to react 

promptly and make sound decisions, increasing the risk of 

accidents. 

The alarming frequency of drowsiness-induced accidents on 

the Samruddhi Mahamarg highlights the urgent need for a 

reliable and effective system to detect and alert drivers of 

their drowsy state. In 2022, the Samruddhi Mahamarg 

recorded a staggering 358 accidents, with driver fatigue 

identified as a major contributing factor in 27% of these 

incidents. The impact of these accidents is far-reaching, not 

only causing loss of life and injuries but also leading to 

significant economic losses due to property damage and 

disruptions in transportation. 

1.3 Objective 

The overarching goal of this project is to develop a 

sophisticated and unobtrusive drowsiness detection system 

that employs a camera and a buzzer to identify and alert 

drivers of their drowsy state. The system should exhibit 

exceptional accuracy in differentiating between open and 

closed eyes, minimizing false alarms to avoid unwarranted 

distractions for the driver. To achieve this objective, the 

MobileNetV1 model is modified to create a customized 

model specifically tailored for drowsiness detection. This 

customized model utilizes a deep learning approach to 

analyze the driver's facial features, particularly eye states, to 

accurately identify signs of drowsiness. 

Specific objectives encompass: 

 

1. Real-time Eye Detection: The system must 

effectively detect and track the driver's eyes in 

real time, even under varying illumination 

conditions and with diverse facial expressions. 

2. Precise Eye State Classification: The 

customized MobileNetV1 model should 

accurately classify the driver's eye state as open, 

closed, or partially closed, providing a reliable 

assessment of their drowsiness level. 

3. Timely and Effective Alerts: The system should 

provide timely and effective alerts to the driver 

when drowsiness is detected, utilizing visual and 

auditory cues. 

4. Minimization of False Alarms: The system 

should be meticulously designed to minimize 

false alarms, ensuring that alerts are triggered 

only when genuine drowsiness is detected, 

avoiding unnecessary distractions for the driver. 

1.4 Scope of the Study 
 

The study conducted is sharply focused on developing and 

implementing a non-intrusive Driver Drowsiness Detection 

System specifically designed for the unique demands of the 

Samruddhi Mahamarg. What sets the proposed project apart 

is its commitment to simplicity and seamless integration 

into the vehicle environment. Unlike other products in the 

market that necessitate drivers to wear additional devices, 

the system stands out by utilizing commonplace 

components such as cameras and buzzers. This approach not 

only prioritizes accessibility but also eliminates the need for 

drivers to wear any extra components, enhancing user 

convenience. The scope extends to real-time drowsiness 

detection based on facial cues, with careful consideration 

given to potential challenges, including variations in 

lighting conditions and individual facial features. 
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Recognizing these limitations, proposed study is dedicated 

to continuous refinement and updates to ensure the system's 

accuracy and reliability. Through this endeavour, the aim is 

to contribute a practical, user-friendly solution to address 

drowsy driving and improve road safety on the Samruddhi 

Mahamarg. 

1.5 Project Significance 

The successful implementation of this drowsiness detection 

system holds immense potential to enhance road safety on 

the Samruddhi Mahamarg and beyond. By effectively 

detecting and alerting drowsy drivers, the system can 

significantly reduce the incidence of fatigue-related 

accidents, saving lives and preventing injuries. Additionally, 

the unobtrusive nature of the camera-based approach is 

expected to increase the system's acceptability among 

drivers. 

The development of this drowsiness detection system aligns 

with the growing emphasis on advanced driver-assistance 

systems (ADAS) that aim to improve road safety by 

reducing human error. By addressing the critical issue of 

driver drowsiness, this project contributes to the broader 

goal of promoting safer and more responsible driving 

practices. 

II- EXISTING SYSTEM 

Several existing fatigue detection systems rely on hardware-

based sensors and modules to monitor physiological and 

behavioural indicators of fatigue. While these approaches 

offer direct measurements of fatigue-related signals, they 

often face limitations in terms of practicality, cost, and 

reliability. 

Infrared Sensor-Based Systems: 

One common approach utilizes infrared (IR) sensors placed 

on the eye to detect fatigue-related changes in pupil dilation. 

However, this method requires direct contact with the user's 

eye, which can be uncomfortable and impractical for 

everyday use. Additionally, loose sensor placement can lead 

to inaccurate measurements and false detections.  

 

EEG-Based Systems 

Electroencephalography (EEG) systems measure brain 

activity to assess fatigue levels. While EEG provides rich 

information about brain state, it requires complex and 

expensive equipment, making it impractical for widespread 

use. Moreover, EEG signals can be influenced by various 

factors, potentially affecting the accuracy of fatigue 

detection. 

 

EEG-Based Systems 

Electroencephalography (EEG) systems measure brain 

activity to assess fatigue levels. While EEG provides rich 

information about brain state, it requires complex and 

expensive equipment, making it impractical for widespread 

use. Moreover, EEG signals can be influenced by various 

factors, potentially affecting the accuracy of fatigue 

detection. 

EEG-Based Systems 

Electroencephalography (EEG) systems measure brain 

activity to assess fatigue levels. While EEG provides rich 

information about brain state, it requires complex and 

expensive equipment, making it impractical for widespread 

use. Moreover, EEG signals can be influenced by various 

factors, potentially affecting the accuracy of fatigue 

detection. 

Wearable Device-Based Systems 

Wearable devices, such as smart watches or fitness trackers, 

have gained popularity for fatigue monitoring.  

However, these devices often rely on indirect measures of 

fatigue, such as heart rate variability or activity levels, 

which may not always accurately reflect fatigue state. 

Challenges with Hardware-Based Fatigue Detection 

 The use of hardware-based sensors and modules for 

fatigue detection presents several challenges: 

 Cost: The requirement for specialized hardware can 

 Significantly increase the overall cost of the system, 

limiting its accessibility. 

 Usability: Hardware sensors often require direct 

contact with the user's body, which can be 

uncomfortable and impractical for everyday use. 

 Reliability: Hardware connections can become loose 

or malfunction, leading to false detections and 

reduced system reliability. 

 Setup Complexity: Assembling and configuring the 

hardware components can be a time-consuming and 

tedious process, requiring technical expertise. 

III-PROPOSED SYSTEM 

The proposed system is a non-intrusive drowsiness 

detection system that utilizes a camera, a buzzer, and a 

processing unit to identify and alert drivers of their drowsy 

state. The system effectively detects and tracks the driver's 

eyes in real time, even under varying illumination 

conditions and with diverse facial expressions. The 

customized MobileNetV1 model accurately classifies the 

driver's eye state as open, closed, or partially closed, 
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providing a reliable assessment of their drowsiness level. 

When drowsiness is detected, the system promptly alerts the 

driver through visual and auditory cues, maximizing the 

chances of preventing a drowsy driving incident. 

 

Advantages of the Proposed System are:  

 Non-intrusive: The system does not require drivers to 

wear any additional devices, enhancing user comfort 

and acceptance. 

 Real-time detection: The system operates in real time, 

providing immediate feedback to drivers about their 

drowsiness state. 

 High accuracy: The customized MobileNetV1 model 

demonstrates high accuracy in classifying eye states, 

minimizing false alarms and maximizing the system's 

reliability. 

 Dual-alert mechanism: The combination of visual and 

auditory alerts ensures that drivers receive clear and 

timely warnings about drowsiness. 

 Seamless integration: The system is designed for easy 

integration into the vehicle environment, with discreet 

camera placement and compatibility with existing 

audio systems. 

 

Overall, the proposed drowsiness detection system offers a 

promising solution for enhancing road safety by addressing 

the critical issue of driver fatigue. Its non-intrusive nature, 

real-time detection, high accuracy, dual-alert mechanism, 

and seamless integration make it a valuable tool for 

promoting safer driving practices and reducing the risk of 

drowsy driving accidents. 

IV-LITERATURE SURVEY 

A variety of methodologies proposed by researchers for the 

detection of drowsiness and blinking in recent years are: 

4.1  Driver Drowsiness Detection [1] 

The system consists of two main components:  image 

processing and drowsiness calculation.  The image 

processing component uses computer vision techniques to 

detect and track the driver's eyes in real-time. The 

drowsiness calculation component uses eye closure 

duration, yawning frequency, and head nodding to calculate 

the driver's drowsiness level. If  the driver's drowsiness  

level exceeds a certain threshold, an alarm will be generated  

to  alert  the  driver  and  prevent  any  potential accidents. 

The  image  processing  component  is  implemented  using 

Python,  Open CV,  and  dlib  libraries.  The system 

captures images from a camera mounted in front of the 

driver and uses a Haar Cascade classifier to detect the 

driver’s face.  The dlib library is then used to detect and 

track the driver's eyes in real-time by detecting the location 

of the pupils in the eye region. The drowsiness calculation 

component uses several metrics to calculate the driver's 

drowsiness level. Eye closure duration is calculated by 

measuring the time between consecutive eye blinks. 

Yawning frequency is detected by monitoring the size of the 

mouth opening. Head nodding is detected by tracking the 

position of the head in the camera frame. These metrics are 

combined using a weighted algorithm to calculate the 

driver’s drowsiness level.  If the driver's drowsiness level 

exceeds a certain threshold, an alarm is generated to alert 

the driver. The alarm can be in the form of an audible alarm 

or a visual signal, such as a flashing light. This system also 

logs the drowsiness level and the time of detection for 

future analysis and evaluation. 

This system provides a reliable and efficient solution to 

detect and prevent driver drowsiness. The  system  can  be  

easily integrated  with any  vehicle  and  can  potentially  

save  lives  by  preventing accidents caused by driver 

drowsiness. 

4.2 Real-Time Fatigue Detection System using OpenCV 

and Deep Learning [2] 

Nowadays, the Driver's safety in the car is one of the most 

desired systems for avoiding accidents. The goal for the 

paper is to ensure the security system. A system that can 

check the Driver's condition for fatigue and alert the Driver 

before it is too late is desired. In the proposed system, a 

driver assistance system using a camera is used that will 

focus on the open or closed state of the Driver's eyes by 

monitoring the state of the eyes, Calculating the EAR ratio 

continuously for each frame detection drowsiness is easy. In 

this technique, this will detect the Driver's fatigue state and 

alert the Driver using an alarm. Facial detection is achieved 

through OpenCV face detection. The eye ball is monitored 

for fatigue detection. The control unit controls every part in 

this system; if fatigue is detected, the system will give the 

alarm using the buzzer. Detection in real-time is the major 

challenge in the field of accident prevention systems. 

4.3 Detecting Driver Drowsiness Based on Sensors: A 

Review [3] 

Making an intoxicated driver operate a vehicle is unethical 

and unsafe. As a result, to conduct their studies, researchers 

have employed simulated environments. The key benefits of 

employing simulators include easy data gathering, safety, 

low cost, efficiency, and experimental control. The driving 

simulators can be broadly categorized as follows: Mid-level 

(Fixed-base) simulators with advanced imaging techniques, 

a large projection screen, a realistic car, and possibly a 

simple motion base; High-level (Motion-based) simulators 

with typically a view close to 360° and an extensive moving 

base; and Low-level simulators with a computer, a monitor, 
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a realistic cockpit, a steering wheel, manual gear box, and 

pedals (clutch, brake, and accelerator). 

Steering Wheel Movement (SWM) is a commonly used 

vehicle-based metric for determining the degree of driver 

fatigue. It is assessed using a steering angle sensor. A 

steering column-mounted angle sensor is used to measure 

the driver's steering behaviour. When driving while sleepy, 

there are less micro corrections made on the steering wheel 

than when driving normally. Sleep-deprived drivers did 

fewer steering wheel reversals than normal drivers, 

according to research by Fairleigh and Graham. The 

researchers only took into account little steering wheel 

motions (between 0.5° and 5°), which are required to modify 

the lateral position within the lane, in order to avoid the 

influence of lane changes. Therefore, using small SWMs, it 

is possible to assess the driver's level of drowsiness and, if 

necessary, issue a warning. To produce fluctuations in the 

lateral position and force the drivers to perform corrective 

SWMs, light side breezes were applied along a curving road 

in a simulated environment, pushing the automobile to the 

right side of the road. SWMs are used by automakers like 

Nissan and Renault, however they are only effective under 

certain circumstances. This is due to the fact that it can only 

operate dependably in specific conditions and is overly 

reliant on the geometric features of the road and, to a lesser 

degree, the kinetic properties of the vehicle. 

4.4 Drowsiness Detection and Alert System: A Review 

[4] 

The author of this project created goggles/spectacles 

equipped with IR sensors and a buzzer. The driver wears 

this full setup. A lot more components are included in the 

setup, including an Arduino UNO, a GSM SIM 800 

module, two batteries, and two ON/OFF buttons that are 

connected to separate batteries. Here, the microcontroller is 

connected to the first battery, while the GSM module is 

attached to the second. The way the whole system operates 

is that, as soon as the driver puts on the goggles, infrared 

sensors detect whether or not the eyes are closed. If they are 

not, the system checks again, and so on, until the driver's 

eyes are discovered to be closed. When the eyes are 

discovered to be closed, the device performs a second 

check, and if the eyes are again found to be closed, the red 

LED and buzzer turn on and stay on for one minute before 

turning off. Following a minute, a condition is established 

whereby the driver is considered alert if the frequency is 

greater than fifty, and alert if the frequency is less than fifty. 

However, as soon as the driver is discovered to be sleepy, 

the owner receives a notification from the GSM module that       

says, "Driver is found drowsy." The same thing keeps 

happening again.  

To put it succinctly, the driver's eyes begin to blink for 

longer than a second whenever they sense drowsiness. The 

IR sensor detects this condition, and the buzzer sounds to 

alert the driver and sends the owner an instant text message. 

4.5 Facial features monitoring for real time drowsiness 

detection [5] 

To train the classifier that will identify the object, the 

algorithm initially requires a large number of positive 

images—that is, images with faces—and negative images—

that is, images without faces. Therefore, in addition to the 

Haar feature-based classifiers, the cascaded Adaboost 

classifier is used to identify the face region. After that, the 

compensated image is divided into a variety of rectangle 

areas that can be anywhere in the original image at any 

scale or position. Haar-like feature is effective for real-time 

face detection because of the variations in facial features. 

These can be computed using the difference in the sum of 

the pixel values within the rectangle. The Adaboost 

algorithm will accept all face samples and reject non-face 

samples of the images during this process.  

4.6 Real time drowsiness detection using eye blink 

monitoring [6] 

Using the Harris corner detection algorithm, which detects 

corners at the side and down curve of the eye lid, the image 

is first converted to greyscale in this method. Following the 

point-tracing process, a straight line will be drawn between 

the top and bottom points. The midpoint will then be 

connected to the lower point by the line's calculation. Now, 

it will follow the same steps for every image, calculating the 

'd' distance between the midpoint and the lower point to 

determine the eye state. Ultimately, the computed distance 

'd' is used to determine the eye state. The eye state is labeled 

as "closed" if the distance is zero or nearly zero; otherwise, 

it is labeled as "open." In order to determine whether the 

person is feeling sleepy or not, they have also called for 

intervals of time. This is accomplished by the average 

person blinking for 100–400 milliseconds, or 0.1–0.4 of a 

second. When the distance is zero or nearly zero, the 

condition of the eyes is categorized as "closed," otherwise, 

it is categorized as "open." In order to determine whether 

the person is feeling sleepy or not, they have also called for 

intervals of time. This is accomplished by the average 

person blinking for 100–400 milliseconds, or 0.1–0.4 of a 

second. 

V-METHODOLOGY 

5.1.  Knowing Dataset 

For the driver drowsiness detection system, the dataset is 

comprised of two fundamental categories of images: open 
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eyes and closed eyes. This dataset serves as a pivotal 

component in training and validating the system's ability to 

recognize and respond to drowsiness in drivers. The "open 

eyes" images depict drivers with fully open, alert eyes, 

while the "closed eyes" images capture moments when 

drivers' eyes are partially or completely closed, signifying 

drowsiness or fatigue. 

The use of open and closed eyes images enables the system 

to discern critical visual cues associated with drowsiness, 

such as eyelid drooping or prolonged eye closure, which are 

indicative of a driver's reduced attentiveness. These images 

are crucial for teaching the machine learning model to 

identify patterns and features that distinguish between an 

alert and drowsy state. As the system progresses, it can 

trigger warnings or interventions to prevent accidents by 

detecting signs of drowsiness in real-time, helping to ensure 

safer and more responsible driving behavior. This dataset 

forms the foundation of the drowsiness detection system, 

empowering it to enhance road safety and driver vigilance. 

Table 4.1: Literature Survey 

Title Author Faults Conclusion 
Driver 

Drowsiness 

Detection 
Sundram 

Ohja, Ankita 

Agrawal 
Sensor 

inaccuraci

es, false 

alarms 

Improved 

system 

accuracy and 

reduced false 

positives 
Real-Time 

Fatigue Detection 

System using 

OpenCV and 

Deep Learning 

K 

Vijaychandr

a Reddy, 

Sanjana 

Gadalay 

It is less 

efficient. 
Suggests to 

develop more 

efficient model 

Detecting Driver 

Drowsiness Based 

on Sensors: A 

Review 

Arun 

Sahayadhas 

Steering 

Wheel not 

detectable

. 

It is 

Impractical. 

Drowsiness 

Detection and 

Alert System: A 

Review 

Jyotsna 

Gabhane 

Hardware 

malfuncti

ons,  user 

discomfor

t 

Suggests more 

robust hardware 

design and cost 

optimization 

and user 

comfort 

Facial features 

monitoring for 

real time 

drowsiness 

detection 

Manu B.N Limited 

dataset, 

slow 

response 

time 

Recommends a 

larger dataset 

and faster 

processing 

algorithms 

Real time 

drowsiness 

detection using 

eye blink 

monitoring 

Amna 

Rahman 

Environm

ental 

factors 

Advocates for 

better 

adaptation to 

environmental 

conditions 

 

The dataset consists of 50,000 images for each of the two 

essential categories: open eyes and closed eyes. These 

images are meticulously collected and manually cleaned to 

ensure high data quality. The dataset is thoughtfully 

organized, with images of open eyes stored in one folder 

and images of closed eyes stored in another. 

The large quantity of images in each category provides a 

diverse and representative sample of real-world scenarios, 

enhancing the system's ability to generalize and accurately 

detect drowsiness in drivers across various conditions. 

Manual cleaning of the images involves removing any 

outliers, anomalies, or irrelevant data, guaranteeing the 

reliability and integrity of the dataset. 

By maintaining separate folders for open and closed eyes 

images, the dataset is organized in a manner that facilitates 

efficient data management and access for the training and 

evaluation phases of the system. This careful curation and 

organization of the dataset, alongside its substantial size, 

plays a crucial role in the system's capacity to recognize the 

visual cues associated with drowsiness, thereby contributing 

to the overall success and safety of the driver drowsiness 

detection system. 

Additional dataset is also used for the validation purpose. 

Images in this dataset are completely different than the 

training dataset. This dataset will be used for the validation 

purpose after the model is been trained after each epoch. 

The directory structure of this dataset is similar as that of 

training dataset. There are 5000 images of each category: 

open eyes and close eyes. [7] 

5.2 Pre-processing Dataset 

5.5.1. 5.5.1 Initializing Paths 

In order to preprocess the images in the dataset, the path 

needs to be specified from where the images will be 

accessed. So following variables are initialized specifying 

the path of the dataset. 

dataset_directory: This variable is intended to store the 

path to the directory containing the training dataset. 

validation_directory: Similar to dataset directory, this 

variable is meant to store the path to the directory 

containing the validation dataset. 

5.5.2 preprocessing_image() function 

This function is designed to process an input image before it 

is fed into the neural network. It first converts the image to 

grayscale using OpenCV's cv.cvtColor function with the 
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COLOR_BGR2GRAY conversion. This is a common step 

in preprocessing to reduce the channel dimensionality of the 

image, making it easier to process. Subsequently, the image 

is converted back to RGB using cv.cvtColor with 

COLOR_GRAY2RGB. The reason for this conversion is to 

ensure that the input to the neural network has the same 

number of channels as expected. Finally, the image is 

resized to a target size using cv.resize. The resulting 

processed image is then returned. This preprocessing 

function is crucial for standardizing the input data and 

ensuring consistency in the format of images presented to 

the neural network. 

5.5.3 Data Augmentation 

An ImageDataGenerator object named datagen is 

instantiated. This object is part of Keras's image 

preprocessing utilities and is designed for real-time data 

augmentation during model training. The rescale parameter 

normalizes the pixel values of the images to the range [0, 1]. 

Various augmentation techniques are applied, including 

rotation (rotation_range), width and height shifting 

(width_shift_range and height_shift_range), shearing 

(shear_range), zooming (zoom_range), and horizontal 

flipping (horizontal_flip). The fill_mode parameter is set to 

'nearest', indicating the strategy for filling in newly created 

pixels during data augmentation. Additionally, the 

preprocessing_function parameter is set to the previously 

defined preprocess_image function. This means that each 

image generated during training will undergo the specified 

augmentations as well as the custom preprocessing defined 

in preprocess_image. 

5.5.4 Data Generators 

In next part, two data generators (data_generator and 

validation_generator) are created using the 

flow_from_directory method of the ImageDataGenerator 

class. These generators retrieve batches of images from 

specified directories (dataset_directory and 

validation_directory). The target_size parameter ensures 

that all images are resized to a consistent size for input to 

the neural network. The batch_size parameter determines 

the number of images in each batch. The class_mode is set 

to 'binary', indicating that the classification task is binary 

(two classes). For the training data generator 

(data_generator), the shuffle parameter is set to True to 

randomize the order of data during training, enhancing the 

model's learning. Conversely, the validation data generator 

(validation_generator) has shuffle set to False to ensure 

consistency in validation performance evaluation. 

5.3 Mobile Net V1 Architecture 

5.3.1 Overview of The Architecture 

Mobile Net, often referred to as MobileNetV1, is a 

groundbreaking family of convolutional neural networks 

designed to address the computational and memory 

constraints of mobile and embedded devices. Introduced by 

Google researchers in 2017, MobileNetV1 is celebrated for 

its exceptional efficiency while delivering robust 

performance in image classification tasks. At the heart of 

MobileNetV1's efficiency is the innovative use of depth 

wise separable convolutions, which significantly reduces 

the model's size and computational requirements. This 

architectural design is complemented by two crucial hyper 

parameters: the width multiplier and the resolution scale, 

allowing for customization of the model to match specific 

resource constraints. MobileNetV1 has found widespread 

application in mobile vision tasks, such as image 

classification, object detection, and semantic segmentation, 

and has served as a foundation for subsequent versions like 

MobileNetV2 and MobileNetV3, which further enhance the 

trade-off between model accuracy and efficiency. This 

pioneering neural network family has played a pivotal role 

in enabling deep learning on resource-constrained devices, 

empowering the development of lightweight yet powerful 

computer vision solutions for mobile and embedded 

systems [8]. Here are some key features and details about 

MobileNetV1: 

1. Efficiency: MobileNetV1 is specifically designed to be 

computationally efficient, making it well-suited for 

deployment on mobile devices and embedded systems. 

It achieves this efficiency by using depthwise separable 

convolutions. 

2. Depthwise Separable Convolution: MobileNetV1 

uses a novel type of convolution operation called 

depthwise separable convolution. This operation splits 

the standard convolution into two separate layers: 

depthwise convolution and pointwise convolution. This 

significantly reduces the number of parameters and 

computations compared to traditional convolutions. 

3. Architecture: MobileNetV1 consists of multiple 

layers, including depthwise separable convolution 

layers, followed by pointwise convolution layers. It 

typically ends with global average pooling and a fully 

connected layer for classification. 

4. Hyper parameter Tuning: MobileNetV1 allows for 

hyperparameter tuning to balance the trade-off between 

model size and accuracy. You can choose different 

model variants by adjusting hyper parameters like the 

width multiplier and resolution scale. 
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5. Width Multiplier: The width multiplier parameter can 

be adjusted to scale the model's width (number of 

channels) while keeping the depth (number of layers) 

constant. This parameter allows you to customize the 

model's size and computational requirements. 

6. Resolution Scale: The resolution scale parameter 

allows you to resize the input images, which can also 

impact the model's size and computational demands. It 

is especially useful for adapting the model to the 

specific requirements of a mobile application 

7.  Retrained Models: Retrained MobileNetV1 models are 

available, which can be fine-tuned for specific tasks or 

used as feature extractors in transfer learning. 

8. Applications: MobileNetV1 is commonly used in 

various mobile vision applications, including image 

classification, object detection, and semantic 

segmentation. It strikes a balance between accuracy and 

resource constraints, making it suitable for real-time 

inference on mobile devices. 

9.   Successor Models: MobileNetV1 has been succeeded 

by MobileNetV2 and MobileNetV3, which introduced 

improvements in terms of accuracy and efficiency. 

These subsequent versions build upon the foundations 

laid by MobileNetV1. 

5.3.2 Architecture 

 

 

 

 

 

 

 

 

Figure 5.3.2.1: Depthwise Separable convolutions with 

Depthwise and Pointwise layers followed by batchnorm and 

ReLU. [8] 

The above flow consists of a 3x3 depthwise separable 

convolution followed by batch normalization (BN) and 

rectified linear unit (ReLU) activation, and then a 1x1 

pointwise convolution, again followed by BN and ReLU. 

The 3x3 depthwise convolution efficiently captures spatial 

dependencies in the input data by applying separate 

convolutions to each channel, reducing computational cost. 

Batch normalization normalizes the output, aiding 

convergence and generalization, and ReLU introduces non-

linearity. The subsequent 1x1 convolution projects the 

depth of the feature space, allowing for a richer 

representation. This pattern is repeated throughout the 

MobileNet architecture, maintaining lightweight and 

efficient characteristics, except for the first layer which 

typically employs a regular convolution to capture broader 

patterns in the input data [8]. Below is the full architecture 

of mobileNetV1: 

Table 5.3.2.1: Architecture of MobileNetV1 [8] 

TYPE STRI

DE 

KERNEL 

SHAPE 

INPUT 

SIZE 

OUTPUT 

SIZE 

Convoluti
on 

2 3 × 3 × 3 × 32 
224 × 224 

× 3 
112 × 112 × 

32 

Conv pw 1 1 × 1 × 32 × 64 
112 × 112 × 

32 

112 × 112 × 

64 

Conv dw 2 3 × 3 × 64 
112 × 112 × 

64 
56 × 56 × 64 

Conv pw 1 1 × 1 × 64 × 128 
56 × 56 × 

64 

56 × 56 × 

128 

Conv dw 1 3 × 3 × 128 
56 × 56 × 

128 
56 × 56 × 

128 

Conv pw 1 1 × 1 × 128 × 128 
56 × 56 × 

128 

56 × 56 × 

128 

Conv dw 2 3 × 3 × 128 
56 × 56 × 

128 

56 × 56 × 

128 

Conv pw 1 1 × 1 × 128 × 256 
56 × 56 × 

128 

28 × 28 × 

256 

Conv dw 1 3 × 3 × 256 
28 × 28 × 

256 
28 × 28 × 

256 

Conv pw 1 1 × 1 × 256 × 256 
28 × 28 × 

256 

28 × 28 × 

256 

Conv dw 2 3 × 3 × 256 
28 × 28 × 

256 

14 × 14 × 

256 

Conv pw 1 1 × 1 × 256 × 512 
14 × 14 × 

256 

14 × 14 × 

512 

Conv dw 1 3 × 3 × 512 
14 × 14 × 

512 

14 × 14 × 

512 

Conv pw 1 1 × 1 × 512 × 512 
14 × 14 × 

512 

14 × 14 × 

512 

Conv dw 1 3 × 3 × 512 
14 × 14 × 

512 

14 × 14 × 

512 

Conv pw 1 1 × 1 × 512 × 512 
14 × 14 × 

512 

14 × 14 × 

512 

Conv dw 1 3 × 3 × 512 
14 × 14 × 

512 

14 × 14 × 

512 

Conv pw 1 1 × 1 × 512 × 512 
14 × 14 × 

512 

14 × 14 × 

512 

Conv dw 1 3 × 3 × 512 
14 × 14 × 

512 

14 × 14 × 

512 

Conv pw 1 1 × 1 × 512 × 512 
14 × 14 × 

512 

14 × 14 × 

512 

Conv dw 1 3 × 3 × 512 
14 × 14 × 

512 

14 × 14 × 

512 

Conv pw 1 1 × 1 × 512 × 512 
14 × 14 × 

512 

14 × 14 × 

512 

Conv dw 2 3 × 3 × 512 
14 × 14 × 

512 
7 × 7 × 512 

Conv pw 1 
1 × 1 × 512 × 

1024 
7 × 7 × 512 7 × 7 × 1024 

Conv dw 2 3 × 3 × 1024 
7 × 7 × 

1024 
7 × 7 × 1024 

3x3 Depthwise Conv 

BN 

ReLU 

1x1 Conv 

BN 

ReLU 
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Conv pw 1 
1 × 1 × 1024 × 

1024 
7 × 7 × 
1024 

7 × 7 × 1024 

Avg Pool 1 Pool 7 × 7 
7 × 7 × 

1024 
1 × 1 × 1024 

FC 1 1024 x 1000 
1 x 1 x 
1024 

1 x 1 x 1000 

Softmax 1 Classifier 
1 x 1 x 

1000 
- 

 

5.4 Modification in MobileNet (New Architecture) 

Table 5.4.1: Modified Architecture of MobileNetV1 

TYPE 
STR

IDE 

KERNEL 

SHAPE 

INPUT 

SIZE 

OUTPU

T SIZE 

Convolut

ion 
2 3 × 3 × 3 × 32 

224 × 

224 × 3 

112 × 

112 × 32 

Conv pw 1 1 × 1 × 32 × 64 
112 × 

112 × 32 

112 × 

112 × 64 

Conv dw 2 3 × 3 × 64 
112 × 

112 × 64 

56 × 56 

× 64 

Conv pw 1 1 × 1 × 64 × 128 
56 × 56 

× 64 

56 × 56 

× 128 

Conv dw 1 3 × 3 × 128 
56 × 56 

× 128 

56 × 56 

× 128 

Conv pw 1 
1 × 1 × 128 × 

128 

56 × 56 

× 128 

56 × 56 

× 128 

Conv dw 2 3 × 3 × 128 
56 × 56 

× 128 

56 × 56 

× 128 

Conv pw 1 
1 × 1 × 128 × 

256 

56 × 56 

× 128 

28 × 28 

× 256 

Conv dw 1 3 × 3 × 256 
28 × 28 

× 256 

28 × 28 

× 256 

Conv pw 1 
1 × 1 × 256 × 

256 

28 × 28 

× 256 

28 × 28 

× 256 

Conv dw 2 3 × 3 × 256 
28 × 28 

× 256 

14 × 14 

× 256 

Conv pw 1 
1 × 1 × 256 × 

512 

14 × 14 

× 256 

14 × 14 

× 512 

Conv dw 1 3 × 3 × 512 
14 × 14 

× 512 

14 × 14 

× 512 

Conv pw 1 
1 × 1 × 512 × 

512 

14 × 14 

× 512 

14 × 14 

× 512 

Conv dw 1 3 × 3 × 512 
14 × 14 

× 512 

14 × 14 

× 512 

Conv pw 1 
1 × 1 × 512 × 

512 

14 × 14 

× 512 

14 × 14 

× 512 

Conv dw 1 3 × 3 × 512 
14 × 14 

× 512 

14 × 14 

× 512 

Conv pw 1 
1 × 1 × 512 × 

512 

14 × 14 

× 512 

14 × 14 

× 512 

Conv dw 1 3 × 3 × 512 
14 × 14 

× 512 

14 × 14 

× 512 

Conv pw 1 
1 × 1 × 512 × 

512 

14 × 14 

× 512 

14 × 14 

× 512 

Conv dw 1 3 × 3 × 512 
14 × 14 

× 512 

14 × 14 

× 512 

Conv pw 1 
1 × 1 × 512 × 

512 

14 × 14 

× 512 

14 × 14 

× 512 

Conv dw 2 3 × 3 × 512 
14 × 14 

× 512 

7 × 7 × 

512 

Conv pw 1 
1 × 1 × 512 × 

1024 

7 × 7 × 

512 

7 × 7 × 

1024 

Conv dw 2 3 × 3 × 1024 
7 × 7 × 

1024 

7 × 7 × 

1024 

Conv pw 1 
1 × 1 × 1024 × 

1024 

7 × 7 × 

1024 

7 × 7 × 

1024 

Avg Pool 1 Pool 7 × 7 
7 × 7 × 

1024 

1 × 1 × 

1024 

Flattern - - 
1 × 1 × 

1024 
1024 

Dense - - 1024 1 

Activatio

n 
- - 1 1 

 

The architecture begins with a standard convolutional layer 

with a 3x3 kernel and 32 output channels, reducing the 

input image size from 224x224 to 112x112. Following this, 

there's a depthwise separable convolution, maintaining the 

spatial dimensions at 112x112. Then, a pointwise 

convolution is applied to expand the number of output 

channels to 64. Subsequently, another depthwise separable 

convolution with a stride of 2 reduces the spatial 

dimensions to 56x56. Pointwise convolutions increment the 

output channels to 128, and this pattern continues with 

alternating depthwise separable and pointwise convolutions. 

This sequence of depthwise and pointwise convolutions 

effectively captures features and reduces spatial dimensions. 

The process culminates with global average pooling, 

reducing the spatial dimensions to 1x1. Following that, a 

flatten layer transforms the 1x1x1024 feature map into a 1D 

vector of size 1024. This vector is connected to a dense 

layer that serves as the final layer before classification, with 

1024 input nodes and a single output node, typically used 

for binary classification. An activation layer applies a 

sigmoid function to the dense layer's output, producing the 

final prediction probability. This architecture is well-suited 

for image classification tasks, and the detailed table helps 

clarify the transformation of data at each stage of the 

network. 

Example 

Consider that an image of size 224x224x3 where 224 is the 

height and width of the image and 3 is the input channels (3 

is for RGB). (The MobileNet architecture by default takes 

the image of size 224x244. So the images in dataset is 

resized to 244x244).  

1. Convolution Layer (Conv): The journey begins with a 

conventional convolutional layer. The input image, with 

its 3 color channels and dimensions of 244x244, 

undergoes a convolution operation using a set of 

3x3x3x32 filters. This initial operation aims to extract 

various features from the image. With a stride of 2, the 
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spatial dimensions are reduced, resulting in a 

112x112x32 feature map. 

2. Depthwise Separable Convolution Layer (Conv dw): 

Following the first convolution, a depthwise separable 

convolution is applied. This layer comprises a depthwise 

convolution followed by a pointwise convolution. The 

input dimensions, 112x112x32, remain unchanged as the 

depthwise convolution maintains spatial size, while the 

pointwise convolution adjusts the number of channels. 

The aim here is to enhance feature extraction. 

3. Pointwise Convolution Layer (Conv pw): In the next 

step, a pointwise convolution is employed to increase 

the number of output channels from 32 to 64. This 

operation injects further complexity into the features 

extracted in the previous layers without altering the 

spatial dimensions, yielding a 112x112x64 feature map. 

4. Depthwise Separable Convolution Layer (Conv dw): 

Another depthwise separable convolution follows, but 

this time with a stride of 2. As a result, the spatial 

dimensions are reduced to 56x56 while preserving and 

improving the feature set within the 64 channels. 

5. Pointwise Convolution Layer (Conv pw): To further 

enrich the extracted features, a pointwise convolution is 

applied, increasing the number of output channels from 

6. 64 to 128. This step increases the depth of features 

without impacting the spatial dimensions, resulting in a 

56x56x128 feature map. 

7. Repeating Depthwise Separable and Pointwise 

Convolution Layers: The architectural pattern of 

depthwise separable convolutions and pointwise 

convolutions persists, each with distinct kernel sizes and 

strides. Each depthwise separable convolution reduces 

spatial dimensions, and the subsequent pointwise 

convolution adjusts channel numbers. This sequential 

process is crucial for capturing intricate features within 

the data. 

8. Global Average Pooling (Avg Pool): At this stage, the 

network applies global average pooling, a critical step in 

feature reduction. This operation computes the average 

values across the spatial dimensions, effectively 

compressing the output into a 1x1x1024 feature map. 

The purpose of this step is to prepare the features for 

final classification. 

9. Flatten Layer (Flatten): The 1x1x1024 feature map is 

then flattened into a 1D vector comprising 1024 

elements. This vector now serves as the input for the 

next layer. 

10. Dense Layer (Dense): The flattened vector enters a 

dense layer with 1024 input nodes and a single output 

node. This dense layer is commonly used for binary 

classification tasks. The output represents a numerical 

value, a crucial intermediary step towards making the 

final classification decision. 

11. Activation Layer (Activation): To convert the output 

from the dense layer into a probability, an activation 

layer applies a sigmoid function. This function maps the 

value to a range between 0 and 1, making it suitable for 

binary classification. The final output reflects the 

probability of the image belonging to a specific class. 

5.5 Model Compilation and Training 

5.6.5 Model Compilation: 

The model compilation stage is crucial for defining the 

training objectives, optimizing strategy, and evaluation 

metrics tailored to the drowsiness detection task. 

Loss Function (loss='binary_crossentropy'): Binary 

crossentropy is aptly chosen as the loss function, given the 

binary nature of the classification task. It quantifies the 

dissimilarity between the predicted probability distribution 

of eye states and the actual binary labels, providing a clear 

signal for the model to minimize the discrepancy. 

Optimizer (optimizer='adam'): The Adam optimizer is 

employed due to its effectiveness in adjusting model 

weights efficiently. Its adaptive learning rate mechanism is 

beneficial for tasks with varying complexities, such as those 

encountered in real-time drowsiness detection scenarios. 

Metrics (metrics=['accuracy']): Accuracy is a crucial metric 

for this application, as correctly identifying whether the 

driver's eyes are open or closed is paramount for accurate 

drowsiness detection. Monitoring accuracy during training 

provides insight into the model's ability to make correct 

predictions, which is directly relevant to the model's real-

world performance. 

5.6.6 Model Training: 

The training process is designed to enable the model to 

learn the patterns indicative of open or closed eyes, 

leveraging a combination of data augmentation and transfer 

learning. 
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 Training Data (data_generator): The 

data_generator is configured to dynamically augment 

the training dataset. Data augmentation is particularly 

beneficial for tasks like drowsiness detection, where 

variations in lighting conditions, head poses, or facial 

expressions can be present. Augmenting the dataset 

with variations in eye states enhances the model's 

ability to generalize to diverse scenarios. 

 Steps per Epoch: The number of steps per epoch is 

determined by the total number of training samples 

divided by the batch size. Each step involves 

processing a batch of augmented images and updating 

the model's weights. In the context of drowsiness 

detection, this iterative learning process helps the 

model adapt to different driver conditions. 

 Epochs (epochs=8): Training is performed over 

multiple epochs to allow the model to iteratively refine 

its parameters. This is crucial for capturing nuanced 

patterns associated with eye states and ensuring the 

model generalizes well to various scenarios 

encountered during driver monitoring. 

 Validation Data (validation_data=validation 

generator): The validation_generator provides a 

separate set of images that the model has not seen 

during training. Evaluating the model on this validation 

set allows for assessing its generalization performance. 

For drowsiness detection, it ensures that the model can 

reliably identify open and closed eyes in new instances, 

crucial for real-world applicability. 

5.6.7 Training Process: 

The steps representing the flow of training of model 

from initial state to the state of saving history is given 

below: 

1. Initialization: 

 The model's weights are initialized based on the 

architecture specified during model creation. 

 The Adam optimizer is initialized with its parameters, 

including learning rates and momentum coefficients. 

2. Data Augmentation: 

 For each training batch, the data generator 

dynamically augments the images. This includes 

random rotations, shifts, shearing, zooming, and 

horizontal flips. 

 Data augmentation introduces variability into the 

training set, making the model more resilient to 

diverse real-world conditions. 

3. Forward Pass: 

 Augmented images from the current batch are fed 

into the model for a forward pass. 

 The model processes each image through its layers, 

generating predictions for whether the eyes are open 

or closed. 

4. Loss Computation: 

 The binary crossentropy loss is computed by 

comparing the model's predictions with the actual 

labels (ground truth) of eye states in the training 

batch. 

 The loss quantifies the difference between predicted 

probabilities and true labels, providing a measure of 

how well the model is performing on the current 

batch. 

5. Backward Pass (Backpropagation): 

 Gradients of the loss with respect to the model's 

parameters (weights) are calculated during 

backpropagation. 

 These gradients represent the direction and 

magnitude of the adjustments needed to minimize the 

loss. 

6. Optimizer Update: 

 The Adam optimizer utilizes the gradients to update 

the model's weights. The adaptive learning rate 

ensures efficient adjustments, especially in the 

presence of varying gradients across different 

parameters. 

7. Iterative Process: 

 Steps 2-6 are repeated for each batch in the training 

set. The model processes multiple batches per epoch, 

and each batch contributes to the overall adjustment 

of the model's parameters. 

 This iterative process allows the model to learn 

progressively complex representations from the 

training data, capturing features associated with open 

and closed eyes. 

8. Epoch Progression: 

 As the model goes through each batch in the training 

set, it refines its parameters to improve accuracy and 

reduce the loss. 

 The model continues this process for the specified 

number of epochs, iterating over the entire training 

dataset multiple times. 

9. Validation Evaluation: 

 After completing each epoch, the model is evaluated 

on a separate validation dataset. 

 The validation set provides an unbiased assessment 

of the model's generalization performance, indicating 

how well it can predict eye states on unseen data. 

10. Training History: 

 The training history, stored in the history variable, 

records metrics such as training and validation loss, 

training and validation accuracy, and any other 

specified metrics. 

 Analyzing the training history over epochs helps in 

understanding the model's learning dynamics and 

potential areas for improvement or adjustments in the 
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training process. 

5.6 Hardware Setup 

5.6.1. Circuit Diagram 

 

 

 

 

 

 

 
Fig 5.6.1.1: Alarm System Setup Using Arduino [9] 

 

In the given circuit diagram, the ‘GND’ pin of LCD is 

connected to ‘GND’ pin of Arduino. ‘VCC’ pin of LCD is 

connected to ‘5V’ pin of Arduino. Similarly, backlight of 

LCD i.e. LED’s (used in LCD) cathode and anode is 

connected to ‘GND’ and ‘5V’ pin of Arduino respectively. 

‘V0’ pin of LCD is connected to 11 no. pin of Arduino. It is 

used to adjust the brightness using pulse-width modulation 

(PWM) which is set 60. ‘RW’ pin of LCD is connected to 

‘GND’ of Arduino since data will not be read from the 

LCD. ‘RS’ and ‘E’ pin of LCD is connected to 2 and 3 no. 

pin of Arduino respectively. ‘DB4’, ‘DB5’, ‘DB6’ and 

‘DB7’ pin of LCD is connected to 4, 5, 6, and 7 no. pin of 

Arduino respectively. Buzzer is operated on 8 no. pin of 

Arduino. LED is operated on 9 no. pin of Arduino. 

5.6.2. Code Implementation 

In the loop function, the system continuously listens for 

incoming data on the serial port using Serial.available(). 

When data is received, the system reads the status and 

responds accordingly. If the received status is 'a', implying 

that the driver is drowsy and needs to wake up, the LCD 

displays a prompt to wake up, the buzzer is activated, and 

an LED is turned on for a brief duration, creating a 

noticeable alert. On the other hand, if the received status is 

'b', indicating that the driver is alert and all is well, the LCD 

displays an "All Ok" message, and both the buzzer and LED 

are turned off after a short delay. The clearSerialBuffer() 

function is called to ensure any residual data in the serial 

buffer is cleared, preventing interference with subsequent 

communications. This loop continues to run, effectively 

monitoring the serial port for incoming instructions, 

allowing the system to respond in real-time to changes in 

the driver's alertness. 

5.7 Integrating Trained Model and Hardware 

To integrate the trained model and hardware setup, a python 

script is developed which will use the trained model to 

generate the input for the hardware setup and send it to the 

Arduino. Arduino, on the basis of input given will respond 

as mentioned earlier.  The script utilizes the OpenCV 

library for face and eye detection, TensorFlow for loading a 

pre-trained deep learning model, and the Serial library for 

communication with an Arduino connected to the COM3 

port. 

The code begins by establishing a serial connection with the 

Arduino board. It then loads a pre-trained deep learning 

model for drowsiness detection, which is the pre-trained 

model. The script initializes cascade classifiers for face and 

eye detection using Haar cascades. The face detection is 

performed with lower parameters to enhance detection in 

less clear conditions. The webcam feed is captured using 

OpenCV's VideoCapture, and the program continuously 

processes frames from the webcam in a loop. 

The script first converts each frame to grayscale to simplify 

processing. It then uses the face cascade classifier to detect 

faces in the frame. The largest detected face is selected, and 

its region of interest (ROI) is extracted. Within this ROI, the 

script uses the eye cascade classifier to detect eyes.  

If eyes are detected, the region of the eyes is extracted and 

preprocessed for input into the pre-trained model. The pre-

processing involves resizing the eye region to 224x224 

pixels, normalizing pixel values to the range [0, 1], and 

expanding the dimensions to match the model's input shape. 

The pre-processed image is fed into the loaded model, and 

the predictions are obtained. If the prediction score for 

closed eyes is above a certain threshold (0.85 in this case), 

the script sends the status 'b' (indicating open eyes) to the 

Arduino via serial communication. If the prediction 

indicates closed eyes, a counter is incremented, and if the 

counter exceeds a certain threshold (3 in this case), the 

status 'a' (indicating closed eyes) is sent to the Arduino.  

The script then updates the display frame with the detected 

status ('Open eyes' or 'Closed eyes') and visual cues. The 

frame is shown in an OpenCV window titled 'Drowsiness 

Detection'. The script exits when the 'q' key is pressed.  To 

run this script, first connect the hardware setup to the 

system and load the code into the Arduino, which makes it 

active. Then run this python script. 
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VI -RESULT 

 

 

 

 

Figure 6.1: Initial Hardware 

 

 

 

 

Figure 6.2: Open Eyes Detected 

 

 

 

 

Figure 6.3: Hardware during Open Eyes Detected 

 

 

 

 

 

Figure 6.4: Closed Eyes Detected 

 

 

 

 

 

Figure 6.5: Hardware when Closed Eyes Detected 

VII-CONCLUSION 

In conclusion, the development and evaluation of the Driver 

Drowsiness Detection System mark a significant stride 

towards advancing road safety and prioritizing driver well-

being. The comprehensive analysis of both hardware and 

software components, coupled with the exploration of 

functional and non-functional requirements, underscore the 

system's robustness and practicality. 

The advantages offered by the system, including accident 

prevention, enhanced road safety, and real-time monitoring, 

position it as a valuable tool in mitigating the risks 

associated with drowsy driving. Moreover, the system's 

integration potential with other safety features and its 

adaptability to various vehicle types and transportation 

scenarios enhance its versatility. 

Additionally, the emphasis on feasibility and economic 

viability, while deferring the use of night vision cameras to 

future iterations, reflects a thoughtful approach to project 

constraints and scalability. 

As the system evolves, the outlined future scope introduces 

exciting possibilities, from advanced behavioural 

monitoring to customizable alert levels and integration with 

machine learning for predictive capabilities. These 

advancements position the Driver Drowsiness Detection 

System not only as a preventive measure against accidents 

but also as a proactive solution that evolves with the ever-

changing landscape of driver safety. 

In essence, the Driver Drowsiness Detection System, with 

its successful training outcomes and promising potential, 

stands as a testament to the commitment to road safety, 

ushering in a new era where technology plays a pivotal role 

in safeguarding lives on the road. 

FUTURE SCOPE 

1) Advanced Behavioral Monitoring: 

Future iterations can extend beyond monitoring eyelid 

movement, incorporating advanced behavioral cues such as 

yawning, head nodding, and facial expressions. This 

comprehensive approach will allow the system to gauge 

drowsiness levels more accurately. 

2) Customizable Alert Levels: 
The system's future development could include 

customizable alert levels based on individual driver 

preferences and habits. This would enable a personalized 

approach, where drivers can set the system to provide 

warnings according to their unique drowsiness thresholds. 

3) Time-Dependent Monitoring: 
Time-dependent monitoring can be introduced, allowing the 

detection system to adapt its sensitivity based on the time of 

day. For instance, during peak drowsiness hours, the system 
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could be more vigilant and issue alerts at lower drowsiness 

levels, enhancing safety during high-risk periods. 

4) Usage Patterns Analysis: 
In future, a feature for analyzing usage patterns over time is 

possible to implement. Thus, the system will be able to 

identify specific hours or conditions when drowsiness levels 

are consistently high, providing valuable insights for both 

drivers and fleet managers. 

5) Integration of Night Vision Cameras: 

While not currently implemented due to cost constraints, the 

future could see the incorporation of night vision cameras. 

This enhancement would significantly improve the system's 

accuracy during low-light conditions, ensuring robust 

drowsiness detection regardless of the time of day. 

6) Cloud Connectivity: 

The overall project can consider integrating cloud 

connectivity for real-time data analysis and remote 

monitoring. This would enable centralized tracking of 

multiple vehicles, providing valuable data for research and 

fleet management. 

7) Enhanced User Interface: 

If more customizations are needed in the detection system 

alone, like the customizable audio buzzer, an intuitive, 

customizable and informative user interface can be 

developed, possibly incorporating feedback mechanisms 

and performance analytics. A user-friendly interface can 

enhance user engagement and encourage proactive 

drowsiness management. 

8) Collaboration with Vehicle Manufacturers: 

This takes a step further in the application and 

implementation of the overall Driver Drowsiness Detection 

System. Collaboration opportunities with vehicle 

manufacturers to integrate the drowsiness detection system 

as a built-in feature in new vehicle models, may contribute 

to widespread adoption. 

These future enhancements aim to not only refine the 

detection system's accuracy and effectiveness, but also pave 

the way for broader applications and industry collaboration.  
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