Dynamic Seismic Analysis of RCC Building as per IS 1893:2002 by Using STAAD-Pro Software

Hiteshkumar D. Mishra¹, Prof. D.L.Budhlani²

¹M.Tech-Student Appearing (Structural Engineering), ²Assistant Professor, Guru Nanak Institute Of Technology, Dahegaon, Nagpur, India, 441501

Abstract – In this paper seismic response of (G+7)R.C.framed building is analyses for seismic load case by using STAAD-Pro software as per IS1893:2002 part-1.This paper consider different seismic parameter like seismic zone(IV), response reduction factor(R), importance factor(I)& other parameters like rock/soil type, structure type, damping ratio etc. This paper provides complete guidelines for STAAD-Pro software analysis & STAAD –Pro gives the results after run analysis in the STAAD output viewer which shows joint displacements, support reactions, member forces, base shear and lateral load.

Keywords- dynamic analysis, IS 1893:2002, reinforced structure, Earthquake, STAAD-Pro, Seismic loads, multistory building, RCC building.

INTRODUCTION

In general, for design of multistory buildings seismic loads need to be considered. According to IS 1893(Part -1):2002 height of the structure, seismic zone, vertical and horizontal irregularities, soft and weak storey necessitates dynamic analysis for seismic load. Structural engineer's role becomes challenging when the building is located in a seismic zone. So, it is to design the structure to resist an earthquake. Seismic design stated, as the structure should be able to ensure the minor and frequent shaking intensity without any damage. In Response Spectrum Method, the Time Periods, Natural Frequencies and Mode Shape Coefficients are calculated by STAAD-Pro Software and remaining process will be done by manually. The modal combination rule for Response Spectrum Analysis is SRSS (Square Root Sum of Squares). The main parameters considered in this

Study are seismic zone IV, response reduction factor(R), importance factor (I) and medium soil type.

METHODOLOGY

Consider (G+7) storey building located in new Delhi zone IV, the soil conditions is medium stiff soil, entire building is supported on raft foundation, RC frame infill with brick masonry, lumped weight due to dead load is $12kN/m^2$ on floors and $10kN/m^2$ on roof, floors carry live load of $4kN/m^2$ on floors and $1.5kN/m^2$ on roof, span of building 5m in X and Z direction, Floor to floor height is 3.1m, bottom floor height is 4.2m, size of beam is assume to be as 0.35X0.45m And size of column as 0.35X0.5m, material assume to be concrete. All the supports are assigning as fixed supports,

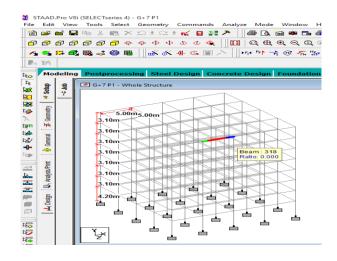


Fig. 1- fig shows the Structural model of building in STAAD-Pro software.

Calculation of design seismic force by (dynamic) Response spectrum analysis method by using STAAD-PRO software:- International Journal of Innovations in Engineering and Science, Vol. 3, No.7, 2018

www.ijies.net

The design lateral shear force is at each floor in each mode is computed by STAAD equation in accordance with equation (7.8.4.5c and 7.8.4.5d) from IS 1893-2002.

$$Q_{ik} = A_k \times \varphi_{ik} \times P_k \times W_i$$

Where A_k , W_i are user inputs

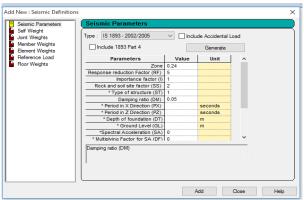
STAAD utilizes the following procedure to generate the lateral seismic load.

- 1) User provides the value for $\frac{Z}{2} \propto \frac{I}{R}$ as factors for input spectrum.
- 2) Program calculate time periods for first six modes or as specified by the user.
- 3) Program calculates $\frac{5a}{g}$ for each mode utilizing time period and damping ratio for each mode.
- 4) The program calculates design horizontal acceleration spectrum A_k for different modes.
- 5) The program then calculates mode participation factor for different modes.
- 6) The peak lateral seismic force at each floor in each mode is calculated.
- 7) All response quantities for each mode are calculated.
- The peak response quantities are then combined as per method (CQC or SRSS or ABS or TEN or CSM) as defined by the user to get the final results.

In order to calculate Base shear value V_b : -

$$Vb = Ah \ge W$$

Seismic parameter:-


Building is made of moment resisting frame with brick in fill panels; we should use empirical expression the fundamental natural period is as follows:

T=0.09h/sqrt (d)..... (Clause 7.6.2 of IS 1893:2002)

Hence approximate fundamental natural period in both X and Z direction is as follows:

T = 0.09(25.9) / sqrt (20)

T = 0.5212 sec... (Since X and Z direction value D = 20)

Fig. 2- fig shows the seismic load definition

Floor Loads in Seismic definition

Dead loads and Live loads

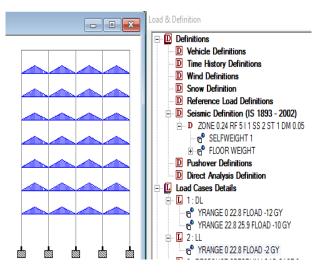


Fig. 3- fig shows the D.L. and L.L.

Defining Response Spectrum load Case:-

First Add Response spectrum load case to load cases. We will have to specify values attach to be considered to calculate the value of Wi.

🗯 si	TAAD.F	Pro V8i (SELECTseries 4) - Dynamic Analy	sys final mod	del			
File	Edit	View Tools Select Geometry Co	ommands /	Analyze	Mode	Window	Н
🏠	i	Add New : Load Items					
 	aral 🛓 Geometry 🛛 👯 setup 🛛 🙀 🙀	Selfweight Load Member Load Physical Member Load Area Load	eight Load	OY	C)z	

Fig. 4- fig shows self weight load in X, Y AND Zdirection

International Journal of Innovations in Engineering and Science, Vol. 3, No.7, 2018

www.ijies.net

Fig. 8- fig shows floor load in Z-direction

D L I: DL
 YRANGE 0 22.8 FLOAD -12 GY
 YRANGE 0 22.8 SLOAD -10 GY
 YRANGE 0 22.8 SLOAD -10 GY
 YRANGE 0 22.8 FLOAD -2 GY
 YRANGE 0 22.8 FLOAD -2 GY
 SELFWEIGHT X 1
 YS SELFWEIG Lo Add... Edit ... Delete... New...

Roof load in X- direction:-

Fig. 5- fig shows response spectrum load case

Same way for add self weight load in Y and Z direction

load (Dead load) in all three direction

Floor load in X-direction:-

Fig. 9- fig shows roof load in X-direction

Roof load in Y- direction:-

Fig. 10- fig shows roof load in Y-direction

Roof load in Z- direction:-

Fig. 7- fig shows floor load in Y-direction

Fig. 6- fig shows floor load in X-direction

YRANGE

Pressure 12

Global X

Global Y

O Global Z

One Way Distribution

Load

kN/m2

Group

Range Define Y Range

Minimum

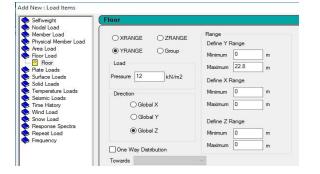
Define Z Rang

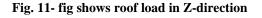
Ma ברדון ובר

Min

0

22.8


m


Floor load in Z- direction:-

Floor load in Y-Direction:-

Add New : Load Items

Selfweight Nodal Load Member Load Physical Memb Area Load Floor Load Floor Load Floor Plate Loads 000000

Adding Live loads in all directions

X- Direction:-

In Response Spectrum analysis we will have to add floor

Impact Factor Value 4.046

Impact Factor Value 4.046

International Journal of Innovations in Engineering and Science, Vol. 3, No.7, 2018 www.ijies.net

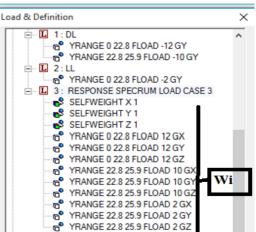
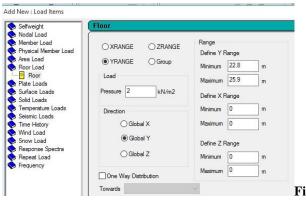



Fig. 12- fig shows L.L. in X-direction

Y-Direction-

g. 13- fig shows L.L. in Y-direction

Z-Direction-

Selfweight	Floor			
Nodal Load Member Load Physical Member Load Area Load Roor Load Goor Load Surface Loads Surface Loads Sold Loads Temperature Loads Temperature Loads Temperature Loads Wind Load	O XRANGE O ZRANGE (a) YRANGE O Group Load Pressure 2 kN/m2 Direction O Global X O Clubal X	Range Define Y F Minimum Maximum Define X F Minimum Maximum	22.8 25.9	m m
Snow Load Response Spectra	◯ Global Y	Define Z F	Range	
Repeat Load	Global Z	Minimum	0	m
Frequency	One Way Distribution	Maximum	0	m
	Towards	~		

Fig. 14- fig shows L.L. in Z-direction

All this plates will be considered for calculating Wi so to calculate Floor Shear

Wi for design base shear Vb for

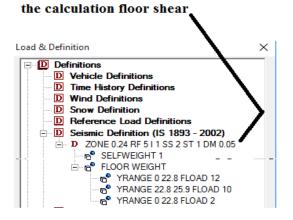


Fig. 15- fig shows the load and definition

Apply Self weight in X, Y and Z to structure

Response Spectrum Command

Selfweight Nodel Load	Response Spectrum						
e Member Load 9 Physical Member Load 9 Area Load 9 Roor Load 9 Pate Loads 9 Surface Loads 9 Sold Loads 8 Temperature Loads 9 Sennic Loads	Code : IS-1893 ~ Combination Method SRSS ~ Save Spectrum Table	Ignore mode(s) wit	h mass participation (IGN)	Use Tomion (IS1893) Dynamic + Accidental (TOR) Dynamic - Accidental (TOR OPP) + Accidental (TOR COU) - Accidental (TOR COU OPP)	Accidental Tonsor		
Temperature Loads	Subsol Case Medium Sol ~ Desentation of 1 1 Types of sol 3 Demonstration arrange resource acceleration coefficient(Sol), will be calculated	Acceleration Displacement Interpolation Type Linear Logarthnic Damping 0.05 OCDAMP MDAMP	Anima DA User Speed Response Speedum Reads D Dommet Moh Nim 1 Toping V 0 Demonst Moh Nim 1 North Response Care Speed P 0 Demonst Moh Nim 1 North Response Care Speed Demonst Moh Nim 1 Demonst Moh Nim 1				
	Graph			1			

Fig. 16- fig shows the response spectrum

$$\frac{Z}{2} \ge \frac{I}{R} = \frac{0.24}{2} \ge \frac{1}{5} = 0.024$$

International Journal of Innovations in Engineering and Science, Vol. 3, No.7, 2018 www.ijies.net

• Analysis / Print--Mode Shapes

Analysis Print Commands Analysis Perform Pushover Perform Ingeretation Analysis Perform Buckling Analysis Perform Pushover Change Perform Direct Analysis Perform Cable Anal Perform Analysis Politic Analysis Perform Cable Anal Perform Cable Anal Philt Option No Pint Cad Data C Statics Check Statics Load	Analysis
C Statics Load	

Fig. 17- fig shows the analyses the mode shapes

- Click Post Print Command
- Define Commands
- Add-Print Analysis Results
- Add-Storey drift

Analyze the Structure

NOTES	JOIN	r DISP	LACEMENT (C		s) stra	CTURE TYPE	- SPACE	
RESULTS								
EIGENSOLUTION								
1893 RESPONSE SPECTRUM LOAD 3	JOINT	LOAD	X-TRANS	Y-TRANS	Z-TRANS	X-ROTAN	Y-ROTAN	Z-ROTAN
EAK STORY SHEAR								
AODAL BASE ACTIONS								
ARTICIPATION FACTORS	1	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
NALYSIS RESULTS TORY DRIFT 0.004000		2	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
TORY DRIFT 0.004000		3	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
	2	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
		2	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
		3	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
	3	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
		2	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
		3	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
	4	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
		2	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
		3	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
	5	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
		2	0.0000	0.0000	0.0000	0.0000	0,0000	0.000
		3	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
	6	1	-0.0029	-0.0774	-0.0030	0.0002	0.0000	-0.000
		2	-0.0005	-0.0104	-0.0005	0.0000	0.0000	-0.000
		3	2.2051	0.0364	0.0034	0.0000	0.0001	0.004
	7	1	-0.0015	-0.1476	-0.0056	0.0004	0.0000	0.000
		2	-0.0002	-0.0198	-0.0009	0.0001	0.0000	0.000
		3	2.2080	0.0021	0.0002	0.0000	0.0001	0.003
	8	1	0.0000	-0.1506	-0.0058	0.0004	0.0000	0.000
WARNING		2	0.0000	-0.0202	-0.0009	0.0001	0.0000	0.000
www.http		3	2.2089	0.0000	0.0010	0.0000	0.0001	0.003

Fig. 18- fig shows the Joint displacement

NOTES	JOIN	T DISP	LACEMENT (C	M RADIAN	S) STRU	CTURE TYPE	- SPACE	
RESULTS								
ENSOLUTION								
B RESPONSE SPECTRUM LOAD 3	JOINT	LOAD	Z-TRANS	Y-TRANS	Z-TRANS	Z-ROTAN	T-ROTAN	Z-ROTA
AK STORY SHEAR								
DDAL BASE ACTIONS								
RTICIPATION FACTORS	93	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
ALVSIS RESULTS		2	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
RY DRP1 0.004000		3	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
	94	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
		2	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
		3	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
	95	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
		2	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
		3	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
	96	1	-0.0055	-0.1480	0.0000	0.0000	0.0000	-0.00
		2	-0.0009	-0.0199	0.0000	0.0000	0.0000	-0.00
		3	2.2712	0.0373	0.0036	0.0000	0.0000	0.00
	97	1	-0.0028	-0.2828	0.0000	0.0000	0.0000	0.00
		2	-0.0004	-0.0381	0.0000	0.0000	0.0000	0.00
		3	2.2742	0.0019	0.0002	0.0000	0.0000	0.00
	98	1	0.0000	-0.2882	0.0000	0.0000	0.0000	0.00
		2	0.0000	-0.0388	0.0000	0.0000	0.0000	0.00
		3	2.2751	0.0002	0.0011	0.0000	0.0000	0.00
	99	1	0.0028	-0.2828	0.0000	0.0000	0.0000	0.00
		2	0.0004	-0.0381	0.0000	0.0000	0.0000	0.00
		3	2.2742	0.0017	0.0061	0.0000	0.0000	0.00
	100	1	0.0055	-0.1480	0.0000	0.0000	0.0000	0.00
WARNING		2	0.0009	-0.0199	0.0000	0.0000	0.0000	0.00
		3	2.2712	0.0373	0.0027	0.0000	0.0000	0.00
ERROR		-	A AAAA	A 4474	A AAAA	0.0000	0.0000	

Fig. 19- fig shows the Joint displacement

RESULTS				M RADIAN				
RESPONSE SPECTRUM LOAD 3								
AK STORY SHEAR ODAL BASE ACTIONS INTICIPATION FACTORS	JOINT	LOAD	Z-TRANS	Y-TRANS	Z-TRANS	Z-ROTAN	Y-ROTAN	Z-ROTAN
ALVSIS RESULTS		3	9.0791	0.1017	0.0012	0.0000	0.0002	0.00
0RV DRIFT 0.004000	216	1	-0.0015	-0.2843	0.0018	-0.0003	0.0000	-0.00
	210	2	0.0002	-0.0341	-0.0002	0.0000	0.0000	-0.00
		3	9.8242	0.1039	0.0043	0.0000	0.0002	0.00
					0.0032		0.0002	
	217	1	-0.0008	-0.5386		-0.0007		-0.00
		2	0.0001	-0.0641	-0.0005	-0.0001	0.0000	0.00
		3	9.8246	0.0038	0.0012	0.0000	0.0001	0.00
	218	1	0.0000	-0.5512	0.0033	-0.0007	0.0000	0.00
		2	0.0000	-0.0658	-0.0005	-0.0001	0.0000	0.00
		3	9.8248	0.0003	0.0035	0.0000	0.0001	0.00
	219	1	0.0008	-0.5386	0.0032	-0.0007	0.0000	0.00
		2	-0.0001	-0.0641	-0.0005	-0.0001	0.0000	0.00
			9.8246	0.0042	0.0018	0.0000	0.0001	0.00
	220	1	0.0015	-0.2843	0.0018	-0.0003	0.0000	0.00
		2	-0.0002	-0.0341	-0.0002	0.0000	0.0000	0.00
		3	9,8242	0.1041	0.0038	0.0000	0.0002	0.00
	221	1	0.0083	-0.2900	-0.0092	-0.0003	0.0000	-0.00
		2	0.0006	-0.0342	-0.0007	0.0000	0.0000	0.00
		3	10.2112	0.1046	0.0021	0.0000	0.0002	0.00
	222	1	0.0045	-0.5492	-0.0170	-0.0006	0.0000	-0.00
		2	0.0004	-0.0642	-0.0012	0.0000	0.0000	0.00
10000000000000000000000000000000000000		3	10,2107	0.0037	0.0055	0.0000	0.0001	0.00
WARNING	223	1	0.0000	-0.5623	-0.0175	-0.0006	0.0000	0.00
ERBOR		2	0.0000	-0.0660	-0.0012	0.0000	0.0000	0.00

Fig. 20- fig shows the Joint displacement

NOTES			ACTIONS -U	IT KN M	RTE STRU	OTORE TYPE	- SPACE	
RESULTS								
ESENSOLUTION	JOINT	LOAD	FORCE-X	POBCE-Y	FORCE-Z	NOM-2	MOM-Y	MOM
1893 RESPONSE SPECTRUM LOAD 3	001111	100740	a concent of	r or on a	Concern in	10011		
EAK STORY SHEAR								
INDAL BASE ACTIONS	1	1	4.04	699,99	5.52	7,85	0.00	-6.8
ARTICIPATION FACTORS		2	0.79	93.74	0.90	1.28	0.00	-1.1
NALYSIS RESULTS			73.56	329.18	0.32	0.74	0.82	198.9
FORY DRIFT 0.004000	2	1	0.13	1335.76	10.55	14,99	-0.01	-0.2
		2	0.01	179.49	1.72	2.45	0.00	-0.0
			30.55	18 73	0.03	0.05	0.45	222 4
		1	0.00	1362.48	10.71	15.22	0.00	0.0
		2	0.00	182.81	1.75	2.40	0.00	0.0
			89.16	0.05	0.15	0.31	0.53	220.8
	4	1	-0.13	1335.76	10.55	14.99	0.01	0.2
		2	-0.01	179.49	1.72	2.45	0.00	0.0
		3	90.55	18,76	0.70	1,50	0.46	222.6
	5	1	-1.81	699,99	5.52	7,85	0,00	6.8
		2	-0.79	93.74	0.90	1.28	0.00	1.1
		3	73.56	328.52	0.33	0,73	0,82	198.5
	46	1	8.98	1307.21	0.45	0.76	0.01	-12.6
		2	1.47	175.82	0.06	0.10	0.00	-2.0
		а	75.27	335.35	0.35	0.79	0,86	203.3
	47	1	0.25	2500.88	0.84	1.42	0.00	-0.4
		2	0.02	337.71	0.11	0.19	0.00	-0.0
			92.56	10.26	0.03	0.05	0.59	227.5
	40	1	0.00	2547.51	0.86	1.45	0.00	0.0
		2	0.00	343.43	0.11	0.19	0.00	0.0
WARNING		3	91.14	1.02	0.16	0.31	0.62	225.5
FREDR	49	1	-0.25	2500.88	0.84	1.42	0.00	0.4

Fig. 21 fig shows the support reaction

NOTES	SUPP	ORT RE.	ACTIONS -UN	ALL NN M	STE STRU	CTURE TYPE	- SPACE	
RESULTS								
ENSOLUTION								
3 RESPONSE SPECTRUM LOAD 3	JOINT	LOAD	FORCE-X	FORCE-Y	FORCE-Z	MOM-X	MOM-X	MOM
IK STORY SHEAR								
DAL BASE ACTIONS								
ALVSIS RESULTS		2	1.47	175.82	-0.06	-0.10	0.00	-2.
RY DRIFT 0.004000		3	75.05	334.25	0.39	0.88	0.89	202.
	137	1	0.25	2500.88	-0.84	-1.42	0.00	-0.
		2	0.02	337.71	-0.11	-0.19	0.00	-0.
		3	92.36	18.24	0.03	0.05	0.61	227.
	130	1	0.00	2547.51	-0.86	-1.45	0.00	ο.
		2	0.00	343.43	-0.11	-0.19	0.00	ο.
		3	90.94	2.34	0.15	0.31	0.62	225.
	139	1	-0.25	2500.88	-0.84	-1.42	0.00	ο.
		2	-0.02	337.71	-0.11	-0.19	0.00	ο.
		3	92.36	26.93	0.73	1.55	0.60	227.
	140	1	-8.98	1307.21	-0.45	-0.76	0.01	12.
		2	-1.47	175.82	-0.06	-0.10	0.00	2.
		3	75.04	333.03	0.31	0.65	0.89	202.
	181	1	4.84	699.99	-5.52	-7.85	0.00	-6.
		2	0.79	93,74	-0.90	-1.28	0,00	-1.
		3	72.99	328.31	0.36	0.86	0.87	197.
	182	1	0.13	1335.76	-10.55	-14.99	0.01	-0.
		2	0.01	179.49	-1.72	-2.45	0.00	-0.
		3	89,96	19,45	0.03	0.05	0,48	221.
	183	1	0.00	1362.48	-10.71	-15.22	0.00	0.
		2	0.00	182,81	-1.75	-2.48	0.00	0.
		3	88.58	0.39	0.15	0.30	0.51	219.
WARNING	184	1	-0.13	1335,76	-10.55	-14.99	-0.01	0.
ERROR			-0.01	170 40	-1 72	-0.45	0.00	

Fig. 22- fig shows the support reaction

	MEMBER			STRUCT	URE TYPE	SPACE			
NOTES									
RESULTS	ALL UN	ITS AP	B N	N METE	(LOCA	L)			
ENSOLUTION 13 RESPONSE SPECTRUM LOAD 3 IX STORY SHEAR 30 AL BASE ACTIONS RTICIPATION FACTORS	MEMINER	LOAD	JT	AXIAL	SHEAR-Y	SHEAR-Z	TORSION	HOM-Y	MOM-
ALYSIS RESULTS	1	1	6	-9.69	36.82	0.12	-1.14	-0.32	34.5
DRY DRIFT 0.004000			2	9,69	38.18	-0.12	1.14	-0.29	-38.5
		2	6	-1.56	6.08	0.02	-0.19	-0.05	5.4
		~	7	1.56	6.42	-0.02	0.19	-0.05	-6.5
		3	é	20.13	67.05	1.93	0.03	5.31	178.
			7	20.13	67.85	1.93	0.03	4.37	160.
	2	1	7	-10.35	37.57	-0.01	-0.03	0.04	39.3
			8	10.35	37.43	0.01	0.03	0.01	-38.
		2	7	-1.63	6.27	0.00	-0.01	0.01	G . :
			8	1.63	6.23	0.00	0.01	0.00	-6.
		з	7	6.00	59.28	1.48	0.00	3.60	147.
			8	6.00	59.28	1.48	0.00	3.79	148.
		a.		-10.35	37.43	0.01	0.03	-0.01	30.
			2	10.35	37.57	-0.01	-0.03	-0.04	-39.3
		2	8	-1.63	6.23	0.00	0.01	0.00	6.
			9	1.63	6.27	0.00	-0.01	-0.01	-6.
		3	0	6.08	59.20	1.44	0.01	3.68	140.
			9	6.08	59.28	1.44	0.01	3.53	147.
WARNING	4	1	9	-9.69	38.18	-0.12	1.14	0.29	38.3
FRADR			10	9.69	36.82	0.12	-1.14	0.32	-34.3

Fig. 23- fig shows the member forces

NOTES	MEMBER	BND P	ORCES	STRUCT	URE TYPE	- SPACE			
RESULTS									
IGENSOLUTION	ALL UN	ITS AP	at 10	MRTH	(LOCA	L)			
B93 RESPONSE SPECTRUM LOAD 3									
EAK STORY SHEAR	MEMBER	LOAD	JT	AZIAL	SHEAR-Y	SHEAR-2	TORSION	MOH-X	MOM-
IODAL BASE ACTIONS ARTICIPATION FACTORS									
NALYSIS RESULTS									
ORY DRIFT 0.004000		2	13	-0.03	6.27	0.00	0.00	0.00	6.5
			14	0.03	6.23	0.00	0.00	0.00	-6.4
		3	13	0.72	55.90	2.29	0.10	5.84	139.8
			14	0.72	55.90	2.29	0.10	5.61	139.6
		1	14	0.66	36.24	0.00	0.00	0.00	34.3
			15	-0.66	38,76	0.00	-0.88	0.00	-40.6
		2	1.4	0.14	6.14	0.00	0.14	0.00	5.9
			15	-0.14	6.36	0.00	-0.14	0.00	-6.5
			14	4.25	60.43	2.20	0.07	6.71	145.4
			15	4.25	60.43	2.98	0.07	8.17	156.3
		1	16	-1.02	39.69	0.01	-0.96	-0.04	42.5
			17	1.02	35.31	-0.01	0.96	-0.03	-31.3
		2	16	-0.14	6.47	0.00	-0.15	0.00	6.1
		·	17	0.14	6.03	0.00	0.15	0.00	-5.4
		3	16	0.55	54.98	3,36	0.07	9.24	143.1
		× .	17	0.55	54.98	3.36	0.07	7.57	131.1
				0.00		3.34	5.07		
	10	1	17	-1.62	37.36	0.00	-0.03	0.00	38.4
			18	1.62	37.64	0.00	0.03	0.00	-39.1
WARNING		2	17	-0.20	6.24	0.00	0.00	0.00	6.4
			1.0	0.20	6.26	0.00	0.00	0.00	-6.5
ERROR			17	0 22	51 12	2 61	0.02	6 41	127 6

Fig. 24- fig shows the member forces

Impact Factor Value 4.046

International Journal of Innovations in Engineering and Science, Vol. 3, No.7, 2018 www.ijies.net

NOTES	1.0	decked window	END 1	ORCES	STRUCT	VRE TYPE	- SPACE			
RESULTS	Contract	decked wesde	<u>~</u>							
EIGENSOLUTION	_	ALL UN	ITS A	18 3	IN METE	(LOCA	L)			
1893 RESPONSE SPECTRUM LOAD	3									
PEAK STORY SHEAR		MEMBER	LOAD	JT	AZIAL	SHRAR-Y	SHEAR-Z	TORSION	MOH-Y	HOM-2
MODAL BASE ACTIONS										
PARTICIPATION FACTORS										
ANALYSIS RESULTS STORY DRIFT 0.004000										
STORY DRIFT 0.004000		235	1	163	-0.60	75.40	0.00	-0.02	0.00	78.39
				164	0.60	71.60	0.00	0.02	0.00	-76.37
			2	163	-0.16	12.54	0.00	0.00	0.00	13.04
				164	0.16	12.46	0.00	0.00	0.00	-12.03
			3	163	0.37	43.50	2.71	0.08	6.03	108.98
				164	0.37	43.58	2.71	0.08	6.73	108.94
		236	1	164	0.83	68.00	0.00	-0.24	-0.01	57.13
				165	-0.83	82.00	0.00	0.24	-0.01	-92.14
			2	164	-0.04	11.76	0.00	-0.03	0.00	10.60
				165	0.04	13.24	0.00	0.03	0.00	-14.33
			3	164	0.58	45.58	3.18	0.00	7.40	109.12
				165	0.58	45.58	3.18	0.00	8.48	118.77
		237	1	166	-11.53	03.06	-0.05	0.29	0.14	97.75
				167	11.53	66.14	0.05	-0.29	0.13	-53.45
			2	166	-0.37	13.35	0.00	0.04	0.00	14.62
				167	0.37	11.65	0.00	-0.04	0.00	-10.38
			3	166	0.66	38.51	3.88	0.06	10.30	100.49
				167	0.66	38.51	3.88	0.06	9.10	92.04
WARNING		238	1	167	-10.89	74.35	0.00	0.02	0.00	75.50
ERROR										

Fig. 25- fig shows the member forces

Fig. 25- fig shows the base shear

CONCLUSION

The response of (G+7) storey RC building under seismic load as per IS1893:2002 (Part-1) by using software STAAD -Pro has been studied. This analysis provides complete guidelines for STAAD-Pro software analysis of dynamic method. STAAD-Pro gives result very quickly as compared to manual calculation. Also Base shear, Lateral load, Joint displacement, support reaction and member forces for all the joints of a building has been calculated in STAAD output viewer.

REFERENCES

- [1] Bureau of Indian standards: IS 875(Part 1):1987,dead load on 7 structures, new Delhi, india
- [2] Paulay T and Priestley M. J. N, Seismic Design of Reinforced Concrete and Masonry Buildings, Willy Interscience, Canada, 1992
- [3] Li Qiusheng, Cao Hong and Li Guiqing, "Static and Dynamic Analysis of Straight Bars with Variable Cross – Section", Computers & Structures, Volume: 59, No: 6. Page: 1185 - 1 191, 1996.
- [4] Bureau of Indian standards: IS 1893(Part 1):2002indian standard criteria for earthquake resistant design of structure part I general provisions of building (fifth revisions), new Delhi india
- [5] Bungale S. T, Wind & Earthquake Resistant Buildings Structural Analysis and Design, Monticello, New York 12701, U.S.A, 2005.
- [6] Agarwal Pankaj, Shrikhande Manish, "Earthquake resistant design of structures", PHI learning private limited, New Delhi, 2009.
- [7] BahadornBagheri, Ehsan SaliminFiroozabad, and MohammadrezaYahyaei, "Comparative Study of the Static and Dynamic Analysis of Multi-Storey Irregular Building", International Journal of Civil, Environmental, and Structural,

Construction and Architectural Engineering, Volume: 6, No: 11, 2012.

- [8] A.K Chopra "Dynamic of structures theory and Earthquake Engineering" fourth edition,Prentice Hall, 2012
- [9] P.p.Tapkire, S.J.(2013) Comparative study of highrise building using Indian standards and EURO standards under seismic forces. International journal of science and research(IJSR),1-4.
- [10] B. Srikanth, V.Ramesh, "Comparative study of seismic response for seismic coefficient and response spectrum methods" al Int. Journal of Engineering Research and Applications ISSN: 2248-9622, Vol. 3, Issue 5, Sep-Oct2013, pp.1919-1924G.
- [11] E. Pavan Kumar1, A. Naresh2, M. Nagajyothi3, M. Rajasekhar, "Earthquake Analysis of Multi Storied Residential Building - A Case Study", 2014.
- [12] A.K.Chopra, V.S.(2014).Design as per Indian standards and also to determine the effect of providing shear wall to building Mr. Gururaj B. Katti, Dr. Basavraj Balapgol "Seismic Analysis of Multistoried RCC Buildings Due to Mass Irregularity By Time History", IJERT, Vol: 3(7), pg 2278-0181, 2014
- [13] Mr. S.Mahesh, M. D. (NOV-DEC 2014). Comparison of analysis and design of regular and irregular configuration of multi Story building in various seismic zones and various types of soils using ETABS and STAAD. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 1-8.
- [14] AnirudhGottala, Kintali Sai Nanda Kishore and Dr. Shaik Yajdhani "Comparative Study of Static and Dynamic Seismic Analysis of a Multistoried Building" International Journal of Science Technology & Engineering, Volume 2, Issue 01, July 2015
- [15] Vinit Dhanvijay, P>D.(2015). Comparative study of different codes in seismic assessment. International research journal of engineering and technology (IRJET),1-13.
- [16] Mahesh N. Patil, Yogesh N. Sonawane, "Seismic Analysis of Multistoried Building", International Journal of Engineering and Innovative Technology (IJEIT) Volume 4, Issue 9, March 2015.
- [17] Chetan Raj, Vivek Verma, Bhupinder Singh, Abhishek, "Seismic Analysis of Building with Mass and Vertical Geometric Irregularity by Response Spectrum and Seismic Coefficient Method in Zone V and II", International Journal of Recent Research Aspects ISSN:2349-7688, Vol. 2, Issue 2, June 2015, pp. 204-211.
- [18] Jun Chen, G.I.(2016). Accelaration response spectrum for predicting f;oor vibration due to occupants jumping.
- [19] Kumar C.S. (n.d.). Comparison of seismic vulnerability of building designed for Higher force versus Higher ductility.1-13
- [20] "Comparative Study of the Static and Dynamic Analysis of Multi-Storey Irregular Building" Bahador Bagheri, Ehsan Salimi Firoozabad, and Mohammadreza Yahyaei
- [21] Document No. :: IITK-GSDMA-EQ21-V2.0 Final Report :: A -Earthquake Codes IITK-GSDMA Project on Building Codes.
- [22] Staad. Pro Help Menu & Bentley Student Server.

AUTHOR PROFILE

Sr.	Photo	Details
No		
1		Hiteshkumar D. Mishra received the B. E. (Civil Engineering) in the year 2015 from MGM'S College of Engineering (SRTMNU Nanded University), Maharashtra State, India. Now he is M.tech. – Student appearing (Structural Engineering) from Gurunanak Institute of Management and Technology, kalmeshwar road, Dahegaon, Nagpur (RTM Nagpur University), Maharashtra State, India.
2		Prof.D.L.Budhlani is working as Assistant Professor, department of civil engineering, Guru Nanak institute of Technology, Dahegaon, Nagpur, Maharashtra, India