Critical Analysis of Water Quality for Different Uses in Rural and Urban Fringe Area around Nagpur

Uzair Khan¹, Dr V.P Thergaonkar², Dr. Arif Khan³

¹Department of Civil (Environmental) Engineering (PG Student) NUVA collage of Engineering and Technology, Nagpur, India, 440013 ² Ex- NEERI Scientist Director, Enviro- Techno Consults, Nagpur, India ³Department of Civil (Environmental) Engineering (Principal) NUVA collage of Engineering and Technology, Nagpur, India, 441501

DOI: 10.46335/IJIES.2020.5.11.2

Abstract –Concept of water quality index need to be propagated in India under the present circumstances leading to spread out colonies / residential areas .in the present paper Canadian standard has been used. water quality indices where worked out for urban fringe area and rural area around Nagpur. Canadian concept of water quality index was adopted. Uses of water for drinking, Agriculture, recreation etc. where considered because of the prevailing water uses in the surveyed area.

Keywords-contaminated, El Nino, adsorbents, Fringe, urbanization

I- INTRODUCTION

Both urban and rural drinking water supplies in India relay on heavily on rainfall pattern. Spatial distribution of rainfall has been disturbed due to global warming and other global phenomena like Elnino etc. Government of India has assured drinking water at the rate 50 to 150 LPCD in rural and urban area respectively. LPCD about 80% of these quantity emergent as waste water, sewage water, grey water. It is known that sewage is still to be provided to urban and rural area Recently it has been realized that depletion rate of ground water has become a matter of Concern. The reason for this is withdrawal of ground water both for drinking water supply and individual purpose. It is also fact that government has been insisting on rural sanitation program. This program has promoted both individuals and local cell bodies like gram panchayat, Zillah parishad etc. to provide pit latrines / pore flush latrines etc. organic matter get digested in the pit prefabricated rectangular septic tank followed by sock pit is also another alternative

CPHEEO, Government of India has recommended narrow /small bore sewerage for transmission of grey water /sewage followed by its treatment by low cost method like stabilization pond /artificial wet land system etc. visit to any rural or urban fringe area will indicate absence of sewerage, flowing grey water drains it has been mention above that rainfall pattern has changed and sudden precipitation, heavily rainfall within short period has become a regular phenomenon under such condition rise in ground water table can be substantial and probably reach the depth of pit latrine, low cost sanitation disposal system

Concept of water quality index summarized the technical finding of water quality surveys into numbers to make it easily comprehensible to decision makers because WQI is based on caused and effect of a water quality parameters which is generally descriptive

II- METHOLOGY

It was decided to find out drinking water quality index For the sources which are being used by consumers in rural urban fringe or urban area then grab sample where collected and analyzed for routine water quality criteria parameter as per IS 10500

Analysis was carried out as per standard method for examination of water, waste water etc. published by American Water Work Association (AWW) or Bureau of Indian Standard (BIS) .Analysis was carried out in the laboratory of Enviro-techno consultant Significance of this parameter are calcium and magnesium can cause hardness to water if chloride Concentration of dissolved species depend on Geology of the Area, Environmental location And the depth from which water is extracted or aquifer from which water is drawn

Inquiry was made for existence of pipe water supply on to the location Drinking water quality criteria Index was calculated by two methods namely Average Weighted arithmetic mean method, Hourtels method

Table 1- Well Water of Rural Area

	Jinda	MahalgaonDighor	Umrea	Hingn
	l steel	0	d road	а
D (powe			
Parameter	$r(\mathbf{R})$	(R)	(R)	(R)
	1 (11)		()	
PH	7.2	7.1	7	6.8
Conductivit	1420	1051	400	10140
у	1450	1051	400	10140
-				
Turbidity	<2	<2	<2	<2
Total				
Dissolve	942	740	283	3540
Solid				
Total	256	204	109	259
Alkalinity	330	294	108	230
Total	240	220	176	2250
Hardness	340	550	170	2230
Calcium	174	150	102	870
Hardness	1/4	150	102	870
Magnesium	166	180	74	1380
Hardness	100	100	74	1360
Coloium	70	60	41	348
Calcium				
L	I	1	L	I

ions				
Magnesium ions	40	43	18	331
Chloride		74	24	2338
Sulphate	35	22	22	42

Table 2- Well Water of Rural Area and Urban Area

-				1
Parameter	Balaji kalmeshwar yerlagaon (R)	Arneja rice mill katol road (R)	ST. Vincent Paloti (U)	Ramdaspeth (U)
PH	7.1	7.1	7.1	7
Conductiv ity	1228	700	3063	586
Turbidity	Nill	<2	<2	<5
Total Dissolve Solid	663	664	2067	588
Total Alkalinity	340	258	508	250
Total Hardness	78	224	500	225
Calcium Hardness	24	166	304	165
Magnesiu m Hardness	54	58	196	60
Calcium ions	10	66	122	66
Magnesiu m ions	13	14	47	14
Chloride	30	54		40
Sulphate	52	29	237	13

Parameter	Ganeshpeth (U)	Raghuji Nagar (U)	Jaripatka (U)	Cotton Market (U)
РН	7	7	7.5	7.6
Conductivity	717	874	1158	1224
Turbidity	<2	<2	<2	<2
Total Dissolve Solid	570	805	926	1171
Total Alkalinity	218	306	136	410
Total Hardness	240	260	156	288
Calcium Hardness	170	150	94	188
Magnesium Hardness	70	110	62	100
Calcium ions	68	60	38	75
Magnesium ions	17	26	15	24
Chloride	46	66	160	97
Sulphate	34	47	89	109

Table 3- Well Water of Urban Area

Table 4 –Surface Water of Rural Area

Parameter	Beltaro	Mahalgaon	Wardha Road
	di	Dighoro	(R)
	(R)	(R)	
РН	7.5	7.6	6.4
Conductivity	280	1016	162
Turbidity	<2	<2	<5
Total Dissolve Solid	273	726	21
Total Alkalinity	285	285	68
Total Hardness	118	270	68

Calcium Hardness	46	140	Nill
Magnesium Hardness	34	130	Nill
Calcium ions	18	56	Nill
Magnesium ions	8	31	Nill
Chloride	14		17
Sulphate	4	71	7

Table 5- Surface Water of Urban Area

Parameter	Panchpouli (U)	Shakardhara Shree Hospital RO Outlet (U)	Pardi Raw water (U)	Dhantoli (U)
РН	7.4	6.5	7	7.6
Conductivity	267	37	699	328
Turbidity	<2	<2	<2	<2
Total Dissolve Solid	213	10	561	174
Total Alkalinity	86	14	274	112
Total Hardness	80	Nill	250	140
Calcium Hardness	65	Nill	188	72
Magnesium Hardness	15	Nill	62	68
Calcium ions	26	Nill	75	-
Magnesium ions	4	Nill	15	-
Chloride	10	8	34	18
Sulphate	13	0.8	28	9

Impact Factor Value 5.856

e-ISSN: 2456-3463

International Journal of Innovations in Engineering and Science, Vol 5, No.11, 2020 www.ijies.net

100	ne o surja		<i>oj 0104111104</i>	
Parameter	Jaripatk a Ring Road (U)	Dhantol i (U)	Shakkardhar a (U)	CA Road(U)
PH	7.1	7	5.5	7.9
Conductivit y	326	288	57	540
Turbidity	<2	<2	Nill	<2
Total Dissolve Solid	289	144	<15	270
Total Alkalinity	106	142	22	202
Total Hardness	116	92	12	188
Calcium Hardness	72	66	0	118
Magnesium Hardness	44	29	12	70
Calcium ions	29	26	0	47
Magnesium ions	11	6	3	17
Chloride	35	28	14	65

Table 6- Surface Water of Urban Area

Table 7- Bore Well Waterof Urban Area

13

Nill

36

Sulphate

12

Parameter	Manish	Suraynagar	Jafar	Civil
	nagar		nagar	lines
		(U)		
	(U)		(U)	(U)
PH	7.4	7.3	7.5	7.1
Conductivity	906	1440	330	841
Turbidity	<2	<2	Nill	<2

Total Dissolve Solid	773	1221	250	663
Total Alkalinity	322	448	90	286
Total Hardness	248	226	132	312
Calcium Hardness	128	150	60	198
Magnesium Hardness	125	76	72	114
Calcium ions	51	60	24	79
Magnesium ions	30	18	17	27
Chloride	-	117	27	17
Sulphate	20	59	90	40

Table 8- Bore Well of Water Urban and Rural Area

Gandh	Ramdaspet	Joliba	Bhilgoan(R
i	h	r)
Nagar	(U)	chowk	
hill		(U)	
road			
(U)			
7.5	7.1	7.5	7
828	1584	1011	1454
<2	<2	<2	41
779	1267	931	1254
236	176	316	434
76	430	296	245
		_, ,	
36	248	174	140
40	182	122	105
			- 50
	Gandh i Nagar hill road (U) 7.5 828 <2 779 236 76 36 40	Gandh i Ramdaspet h Nagar hill road (U) (U) 7.5 7.1 828 1584 <2	Gandh iRamdaspet hJoliba rNagar hill(U)rroad (U)(U)r7.57.17.582815841011 <2 <2 <2 7791267931236176316764302963624817440182122

Hardness				
Calcium ions	14	99	70	56
Magnesium ions	10	45	29	25
Chloride	146	171	85	87
Sulphate	30	39	66	131

Table 9- Bore Well Water of Rural Area

Parameter	Vihar	Mahalgaon	Bharath	Saraswati
	,Kamptee	Dighori	wada	Nagar
	(R)	e	(R)	(R)
	. ,	(R)	~ /	. ,
PH	7	7.6	7	7
Conductivity	3625	953	1904	610
Turbidity	<2	<2	<2	<2
Total	1875	601	911	588
Dissolve				
Solid				
Total	216	282	454	238
Alkalinity				
Total	800	280	340	284
Hardness				
Calcium	560	110	240	168
Hardness				
		. = 0		
Magnesium	240	170	100	116
Hardness				
Calaium	244	4.4	06	67
Calcium	244	44	90	07
10118				
Magnesium	60	41	24	28
ions				20
Tons				
Chloride	640	-	180	32
Sulphate	402	25	150	40

The WQI Canadian Standard 1993 tool is used for calculating WQI where the data is put up into Excel sheet

III- RESULT

Table 10 - Well Water of Rural Area

				Recreati	Irrigati
Data	Overall	Drinking	Aquatic	on	on
WQI	83	79	100	100	100
Quality			Excelle	Excellen	Excell
	Good	Fair	nt	t	ent

Table 11 - Well Water of UrbanArea

Data	Overa ll	Drinki ng	Aquatic	Recreati on	Irrigation
WQI	70	75	100	100	41
Quality	Fair	Fair	Excellent	Excellent	Poor

Table 12 - Surface Water of Urban Area

				Recreatio	Irrigatio
Data	Overall	Drinking	Aquatic	n	n
WQI	72	66	41	100	100
Quali					Excelle
ty	Fair	Fair	Poor	Excellent	nt

Table 13- Well Water of Urban Area

Data	Overal 1	Drinking	Aquatic	Recreation	Irriga tion
WQI	71	78	100	100	35
Qualit y	Fair	Fair	Excellent	Excellent	Poor

Table 14 - BoreWell Water of Rural Area

Data	Overal l	Drinki ng	Aquatic	Recreati on	Irriga tion
WQI	71	78	100	100	35
Quality	Fair	Fair	Excellent	Excellent	Poor

 Table 15 - Bore Well Water of Rural Area

	Ove	Drinki	Aquati	Recreatio	Irrigati
Data	rall	ng	с	n	on
WQI	66	62	100	100	27
Quality		Margi	Excell		
-	Fair	nal	ent	Excellent	Poor

IV-CONCLUSION

Present study has confirmed the utility of water quality index before selecting any source for intended use of a source. This will help in prioritization of sources for execution water supply schemes. Further utility is to specify water quality in numbers which can be taken by the executives so that it will be advisable to find out water quality indices of proposed drinking water supply sources before finalizing any water supply source in urban areas. Examination in three season of the year is advisable. This is also applicable to rural areas

REFERENCES

- [1] Mangesh P. Bhorkar; Analysis of Surface Water Quality of Wainganga River in Central Region of India; National conference in recent trends in Environmental Engineering; Nov-2011
- [3] https://www.researchgate.net/publication/283015086_Ad aptability_of_water_management_strategies_in_the_cont ext_of_Climate_change_for_drought_prone_areas_of_We st_

- [4] https://www.semanticscholar.org/paper/Determination-ofoptimal-fluoride-concentration-in-Chandra-Sharma/dec4e599ea949328f1d6c1ce7e64ff1aee076d9b
- [5] https://www.semanticscholar.org/paper/Water-qualityand-dental-fluorosis.-Chandra-Thergaonkar/e7a294eb4ac8e6c76a1a806107441adf3908c 3b9.
- [6] https://www.researchgate.net/publication/284381424_Per formance_Evaluation_of_Effluent_Treatment_Plant_for_ Textile_Mill_at_Ramtek_MS_India
- [7] NEERI manual; Water and Wastewater Analysis.
- [8] Sanyogita R. Verma, P.R. Chaudhari, R.K.Singh and S.R Wate; Studies on the Ecology and Trophic Status of An Urban Lake At Nagpur City, India Vol.4, No.3 pp 652-659; 2009
- [9] https://www.mae.gov.nl.ca/waterres/quality/background/s s-wqi.html