A Cryptographic Enhancement for Strengthened AES Resilience Sunil Kishor Khode¹, Dr. Manish P. Deshmukh² ¹Research Scholar, : 0009-0001-1705-6460, SSBT's COET, Bambhori, Jalgon, India, Pin-425001, ²Professor & Head, E & TC Engg. Dept., : 0009-0001-2557-2596 SSBT's COET, Bambhori, Jalgaon, India, Pin-425001, rushimd@yahoo.com Email of corrsponding Author: khodesunil@gmail.com Received on: 7May,2025 Revised on: 08 June,2025 Published on: 10 June,2025 Abstract—AES is a widely used encryption technique for securing digital data. This study presents a new method aimed at improving the avalanche effect in the AES algorithm., which is a critical factor for ensuring data security. However, enhancing its security further remains a topic of interest. This paper explores an optimized method to improve the avalanche effect in AES by incorporating modifications in the S-Box transformation. The proposed approach demonstrates an increased diffusion rate, leading to improved security against cryptanalysis. Comparative analysis with conventional AES highlights the advantages of the modified model. **Keywords**—Cryptography, AES, Avalanche effect, Add round Key #### INTRODUCTION Security concerns in digital communication have led to extensive research in cryptographic algorithms. AES, as a symmetric block cipher, is known for its efficiency and security. The avalanche effect, a crucial property in cryptographic systems, ensures that minor changes in input lead to significant alterations in output. This study aims to enhance this effect by refining the S-Box structure in AES. Previous studies have underscored the significance of the avalanche effect in strengthening cryptographic algorithms. Research indicates that enhancing substitution and permutation processes can lead to better security outcomes. Notably, modifications in S-Box designs have been a focal point for achieving improved diffusion characteristics. This paper builds upon these foundational insights, proposing a refined method for enhancing AES's resistance to differential and linear cryptanalysis. The S-Box, a nonlinear substitution stage, plays a pivotal role in enhancing security. In the current digital era, transmitting plain (readable) data over the internet poses significant security risks due to potential intrusions by unauthorized entities aiming to access sensitive information. Such critical data may include e-banking credentials, confidential emails, or private conversations on social media platforms. To safeguard this information, various security measures are employed, with cryptography being one of the most essential techniques. Cryptography plays a key role in protecting sensitive information by transforming readable data into an unintelligible format known as ciphertext through a process called encryption. To make the data understandable again, the ciphertext is converted back into its original form using decryption. This process takes place at the receiver's end and effectively reverses encryption. A cryptosystem refers to the overall setup that supports both encryption and decryption functions. Figure 1 illustrates the basic concept of how these processes are carried out. [1]. e-ISSN: 2456-3463 Fig.1 AES Encryption system #### I. A Concise Overview of Cryptography: Cryptography aims to achieve several core objectives as follows: - , one of which is confidentiality—ensuring that information is accessible only to those with the proper authorization.which are explained - •Confidentiality: It ensures that information is accessible only to those with the proper authorization, which are explained - **Integrity:** Guarantees that the data remains unaltered during its transmission from sender to receiver. - •Authentication: Verifies the origin of the data and confirms the identity of the sender, helping to prevent disputes regarding the data's origin or delivery path. - •Non-repudiation: Ensures that the sender cannot deny having sent the information.. Cryptographic techniques are broadly categorized based on the type of security keys used, primarily into **symmetric** and **asymmetric** encryption. These techniques are discussed in the following sections. ## A. Symmetric (Private Key) Encryption In symmetric key encryption, the same secret key is shared between the sender and the receiver for both encrypting and decrypting the information must agree on the encryption algorithm before initiating data exchange. They also share a single secret key used for both encrypting and decrypting the data. Once the algorithm and key are agreed upon, the sender transmits the encrypted data along with the key. The receiver applies the identical secret key to convert the encrypted data back to its original form. A key challenge in this approach is securely sharing the secret key. If unauthorized entities discover the key, the confidentiality of the data is compromised. Additionally, effective key management becomes more complex as the number of users increases. For instance, if n participants are communicating, a total of n(n-1)/2 unique secret keys are required to maintain secure communication between all parties. ## B. Asymmetric (Public Key) Encryption Asymmetric encryption uses two separate keys: one public and one private. The public key is available to anyone, while the private key is kept secure by its owner. To begin communication, both parties share their public keys. When transmitting data, the sender encrypts it using the recipient's public key, allowing only the recipient who holds the matching private key-to decode the message. This method effectively addresses key management challenges, as there is no need to share private keys. However, asymmetric encryption requires more computational resources and is significantly slower—approximately 1,000 times slower-than symmetric encryption. This limitation makes it less efficient for devices with limited processing power, such as mobile phones or tablets. e-ISSN: 2456-3463 To overcome this challenge, a hybrid encryption approach is often adopted. In this method, asymmetric encryption is used solely for securely exchanging the secret key, while symmetric encryption handles the actual data transfer, optimizing both security and performance. #### C. Hashing Hashing in cryptography plays a vital role in verifying that data has not been altered and confirming the identity of its source. It involves applying a hash function to the input data, generating a fixed-length output known as a hash or digest. This output serves as a unique identifier, much like a digital fingerprint of the original content. Upon receiving the data, the recipient can apply the same hash function to verify the integrity of the message. If the computed hash matches the original hash value, it confirms that the data has not been altered during transmission. Any mismatch indicates potential tampering or corruption. ## II. Internal structure of AES AES is a symmetric block cipher that processes data in 128-bit blocks and allows key lengths of 128, 192, or 256 bits. These key sizes were selected to align with the security criteria outlined by NIST during the development of the standard. The number of encryption rounds carried out by the algorithm depends on the length of the key, as detailed in Table 1 [2]. Table 1: Key length and number of rounds of AES | Block Size (Bits) | Key Length | No. of Round | |-------------------|------------|--------------| | | (Bits) | | | 128 | 128 | 10 | | 128 | 192 | 12 | | 128 | 256 | 14 | **Key Addition Layer:** At this stage, a 128-bit subkey is derived from the original key through a key scheduling method. This subkey is then merged with the current data state using the XOR operation. Fig. 2 Add round Key operation ## 1.1 Confusion Layer: The Confusion Layer enhances security by altering the relationship between the plaintext and the ciphertext. It achieves this by substituting elements within the state table, effectively transforming the original content into a more complex and less predictable form. ## Byte Substitution layer (S-Box): In the Byte Substitution phase, every byte in the data block is replaced using a predefined lookup table called the S-Box. This non-linear substitution disrupts patterns between the original data and the encrypted output, enhancing resistance to various cryptographic attacks [2]. Fig. 3 S- Box Fig.4 Byte Substitution Process **1.3 Diffusion Layer:** The Diffusion Layer ensures that the influence of each input bit is spread across multiple output bits, enhancing the complexity of the cipher. This layer consists of two sub-layers, both performing linear transformations to achieve diffusion: e-ISSN: 2456-3463 **Shift Rows layer:** In this stage, each row of the state matrix is rotated by a certain number of positions in a circular manner. This step helps in dispersing the data across columns, increasing the diffusion effect and contributing to the overall strength of the encryption This defines the method used to rotate the rows, as illustrated in Figure 5. based on the output of the previous layer. Fig.5 Shift Row Process Mix Column layer: In the Mix Columns stage, each column of four bytes from the state is considered as a vector and is transformed through multiplication with a fixed 4×4 matrix composed of constant values. This transformation enhances the diffusion property by ensuring that each byte of a column affects all four bytes of the resulting column. The matrix used for this operation is illustrated in Fig. 6. The overall AES encryption process is depicted in Fig. 7. Notably, the final round of AES excludes the Mix Columns **step**, which contributes to the cipher's strength and complexity. Decryption reverses the encryption steps by applying operations like inverse substitution, inverse row rotation, and inverse column transformation to restore the original plaintext. Fig.6 Mix Column Process | | BLOCKS
IZE | OAES
ENCRYPTION
TIME | OAES
DECRYPTION
TIME | MAES
ENCRYPTION
TIME | MAES
DECRYPTION
TIME | |----|---------------|----------------------------|----------------------------|----------------------------|----------------------------| | 0 | 0 | 0 | 0 | 0 | 0 | | 1 | 200 | 0.07306695 | 0.144130468 | 0.078723431 | 0.150136471 | | 2 | 400 | 0.144131184 | 0.288996458 | 0.157142639 | 0.298270941 | | 3 | 600 | 0.212802649 | 0.426130772 | 0.232753038 | 0.444164991 | | 4 | 800 | 0.286910772 | 0.569517136 | 0.309027433 | 0.594110966 | | 5 | 1000 | 0.357120514 | 0.711867571 | 0.388439655 | 0.74558115 | | 6 | 1200 | 0.431531429 | 0.85889554 | 0.464734077 | 0.886425018 | | 7 | 1400 | 0.498572111 | 1.001305819 | 0.543958187 | 1.037644386 | | 8 | 1600 | 0.571002483 | 1.146540165 | 0.618527889 | 1.181308985 | | 9 | 1800 | 0.648367643 | 1.294424295 | 0.705809116 | 1.347166538 | | 10 | 2000 | 0.718652487 | 1.439751625 | 0.777841568 | 1.482756615 | | 11 | 2200 | 0.789165974 | 1.575108528 | 0.861928225 | 1.638389587 | | 12 | 2400 | 0.859639406 | 1.725492477 | 0.941195965 | 1.798029661 | | 13 | 2600 | 0.933243036 | 1.873767138 | 1.021160603 | 1.936397552 | | 14 | 2800 | 1.013615608 | 2.016579628 | 1.237341166 | 2.339947224 | | 15 | 3000 | 1.081787348 | 2.166396141 | 1.164149284 | 2.241556168 | | 16 | 3200 | 1.148303032 | 2.296367645 | 1.248567104 | 2.383872271 | | 17 | 3400 | 1.225673199 | 2.453509569 | 1.33632946 | 2.540692329 | | 18 | 3600 | 1.304152012 | 2.593055487 | 1.421662569 | 2.693468332 | | 19 | 3800 | 1.372518063 | 2.731688261 | 1.477969885 | 2.82988286 | | 20 | 4000 | 1.444795132 | 2.901023626 | 1.560515404 | 3.043602705 | | | 4200 | 1.502748251 | 2.991802454 | 1.656993151 | 3.155423403 | | 22 | 4400 | 1.575759411 | 3.142236233 | 1.70720768 | 3.27212286 | | 23 | 4600 | 1.660069942 | 3.379750729 | 1.78350544 | 3.409239531 | | 24 | 4800 | 1.813122749 | 3.453919411 | 1.862156391 | 3.575967789 | | 25 | 5000 | 1.787180901 | 3.587009668 | 1.936036348 | 3.712869167 | #### **Proposed architecture:** This research introduces an enhanced encryption algorithm designed to strengthen key security objectives—Integrity, Availability, and Confidentiality—during data transmission. The proposed method builds upon the symmetric key encryption framework, similar to the Advanced Encryption Standard (AES), by incorporating an additional step to enhance security [1]. Figure 8 depicts the structure of the modified AES algorithm. To assess its performance, multiple plaintext inputs were encrypted using both the conventional AES and the modified version (M-AES). The resulting ciphertexts were then examined and compared by quantitatively measuring the avalanche effect [3]. It was observed that the avalanche effect is influenced not only by the algorithm's complexity but also by the characteristics of the encryption key & plaintext [4]. Table 2 shows a comparison of the performance between the standard AES and the modified AES.. The results indicate that the inclusion of the additional Add Round Key step leads to a negligible increase in execution time. Specifically, for larger block sizes, the difference in execution time is approximately 0.13 seconds, demonstrating that the security enhancement does not substantially compromise efficiency [5][15]. Table 2. Performance Comparision e-ISSN: 2456-3463 Fig.7 AES Encryption and Decryption Fig. 8 Modify AES Architecture Avalanche Effect and Testing: In cryptography, the avalanche effect is a key characteristic of encryption algorithms, where a minor alteration in the plaintext or encryption key results in a substantial and unpredictable change in the cipher text [6]. This property is essential for maintaining the robustness and security of cryptographic systems [16]. Simply put, the avalanche effect measures how significantly the cipher text changes when even a single bit of the plaintext or key is altered. Ideally, changing a single bit in the input should cause at least half of the bits in the ciphertext to be altered [7]. The results of these experiments are presented in Tables 3 and 4 [8][12][17]. Table 3 Avalanche effect for Key | | key | Cipher text | bits flipped | avalanche effect | |----|--|--------------------------------------|--------------|------------------| | 0 | A9B5ED7585C8B15
D7454ED271AA3A3
A3 | AD512E36316802EFF7895
87EE2EFA6BB | 0 | 0 | | 1 | 29B5ED7585C8B15
D7454ED271AA3A3
A3 | E44EC5EADB225DF51DF99
5859EAE6AF6 | 57 | 44.53125 | | 2 | 69B5ED7585C8B15
D7454ED271AA3A3
A3 | 369FF04CF3D35BBD5683E
29CA0F41F03 | 62 | 48.4375 | | 3 | 49B5ED7585C8B15
D7454ED271AA3A3
A3 | F1D646890A379C3E40C7F
87854E78491 | 65 | 50.78125 | | 4 | 59B5ED7585C8B15
D7454ED271AA3A3
A3 | 76488C9CB6C573005FBF6
E69F19FF3BC | 64 | 50 | | 5 | 51B5ED7585C8B15
D7454ED271AA3A3
A3 | 00B3EF1EB598D856A1031
3D7669B2DD5 | 68 | 53.125 | | 6 | 55B5ED7585C8B15
D7454ED271AA3A3
A3 | 2D4F16BDEEC5E7A899F00
769823FD72E | 62 | 48.4375 | | 7 | 57B5ED7585C8B15
D7454ED271AA3A3
A3 | COCBFDD936870623E7925
69214006E82 | 59 | 46.09375 | | 8 | 56B5ED7585C8B15
D7454ED271AA3A3
A3 | BC1429B4F6C619F700F34
BFAF9CDD177 | 69 | 53.90625 | | 9 | 5635ED7585C8B15
D7454ED271AA3A3
A3 | 3D44B310A4D180D373DF
314507BD4778 | 69 | 53.90625 | | 10 | 5675ED7585C8B15
D7454ED271AA3A3
A3 | 36FEBFFBB1EBA11E9D6E6
3E1A012AB2A | 60 | 46.875 | | 11 | 5655ED7585C8B15
D7454ED271AA3A3
A3 | 7B29242647969BF572EE5
468F37F2737 | 75 | 58.59375 | | 12 | 5645ED7585C8B15
D7454ED271AA3A3
A3 | FDB751DB2190666E8A189
9B8C09FB278 | 70 | 54.6875 | | 13 | 564DED7585C8B15
D7454ED271AA3A3
A3 | 700F5471A4DF1596D4A62
BC144851849 | 50 | 39.0625 | | 14 | 5649ED7585C8B15
D7454ED271AA3A3
A3 | 64A3BAE3560A192101653
F9A6DDC6024 | 55 | 42.96875 | | 15 | 564BED7585C8B15
D7454ED271AA3A3
A3 | 2D0FA8366FF47027E4B3C
3BA2C10162C | 67 | 52.34375 | | 16 | 564AED7585C8B15
D7454ED271AA3A3
A3 | D07C0EC51B5FFF8D404C7
812F3A78713 | 69 | 53.90625 | | 17 | 564A6D7585C8B15
D7454ED271AA3A3
A3 | 13D478C8DEC1C819894F2
91CF8EFA35F | 61 | 47.65625 | | 18 | 564A2D7585C8B15
D7454ED271AA3A3
A3 | E761BC212DCE6AD5983E
D2B4AE00A56E | 66 | 51.5625 | | 19 | 564A0D7585C8B15
D7454ED271AA3A3
A3 | 9BD668E0DB520F3550338
41EAA8A9D6B | 64 | 50 | | 20 | 564A1D7585C8B15
D7454ED271AA3A3
A3 | 3680A89B9F9AE8A0D52CF
3BBD8532D9D | 60 | 46.875 | Table 4 Avalanche effect for plain Text e-ISSN: 2456-3463 | | plaintext | Cipher text | bits
flipped | avalanche
effect | |--------|--|--------------------------------------|-----------------|---------------------| | 0 | B9B5ED7585C8B
15D7454ED271A
A3A3A3 | AD512E36316802EFF7
89587EE2EFA6BB | 0 | 0 | | 1 | 39B5ED7585C8B
15D7454ED271A
A3A3A3 | B7FFC781D85BB0AB7C
26EB15B8D5F807 | 56 | 43.75 | | 2 | 79B5ED7585C8B
15D7454ED271A
A3A3A3 | B0876BCDCC9AA995D
E1372C0F2E7F075 | 60 | 46.875 | | 3 | 59B5ED7585C8B
15D7454ED271A
A3A3A3 | B2AFCF4B18D21B7069
D0BD76A4F5F63C | 62 | 48.4375 | | 4 | 49B5ED7585C8B
15D7454ED271A
A3A3A3 | BF3ABBDFFDC5E305FA
06DB61AF86615D | 60 | 46.875 | | 5 | 41B5ED7585C8B
15D7454ED271A
A3A3A3 | 116CA34D8D490529EB
3898FD1DF7EB9C | 64 | 50 | | 6 | 45B5ED7585C8B
15D7454ED271A
A3A3A3 | 25BDF7FE322D24AA9B
58F6A0D7826459 | 67 | 52.34375 | | 7 | 47B5ED7585C8B
15D7454ED271A
A3A3A3 | 88453CA26E1C88E847
24FB48F5E76D9F | 74 | 57.8125 | | 8 | 46B5ED7585C8B
15D7454ED271A
A3A3A3 | E19D2F35CCDF12477E
D52744CB513C08 | 65 | 50.78125 | | 9 | 4635ED7585C8B
15D7454ED271A
A3A3A3 | EDC5CB74833F572E14
C80D8E2590A71F | 70 | 54.6875 | | 1
0 | 4675ED7585C8B
15D7454ED271A
A3A3A3 | CF501F588D190F6A02
467AB96936F0E6 | 64 | 50 | | 1 | 4655ED7585C8B
15D7454ED271A
A3A3A3 | C9238742F4DB3BD1D2
D4F4C4952299DB | 59 | 46.09375 | | 1 2 | 4645ED7585C8B
15D7454ED271A
A3A3A3 | 51F4A47C39E06BE3B0
390223EF3E6165 | 69 | 53.90625 | | 1 | 464DED7585C8B
15D7454ED271A
A3A3A3 | C707B1B3AECDB5F7E1
350CBF243F0C47 | 62 | 48.4375 | | 1 | 4649ED7585C8B
15D7454ED271A
A3A3A3 | 20C00205B590DC1491
9EC77AED94D330 | 60 | 46.875 | | 1
5 | 464BED7585C8B
15D7454ED271A
A3A3A3 | AE66E4479643D4AEB6
5A695656BB75A3 | 71 | 55.46875 | | 1
6 | 464AED7585C8B
15D7454ED271A
A3A3A3 | E8D211134AA68FE63D
57EE9985D47789 | 58 | 45.3125 | | 1 7 | 464A6D7585C8B
15D7454ED271A
A3A3A3 | F1FC4759A2A892C7E4
6E404D1904375B | 65 | 50.78125 | | 1 | 464A2D7585C8B
15D7454ED271A
A3A3A3 | 03C510B1508B6A3398
A0F641E81347ED | 59 | 46.09375 | | 1
9 | 464A0D7585C8B
15D7454ED271A
A3A3A3 | E8A76BC950AC08EC12
62141452E4A3CC | 66 | 51.5625 | | 2 | 464A1D7585C8B
15D7454ED271A
A3A3A3 | 7BD8FDFB54B9748156
DBA37251C93FC7 | 60 | 46.875 | ## III. Conclusion The AES algorithm offers a robust level of security combined with efficient implementation, making it a reliable encryption standard for the foreseeable future [9]. The analysis in this paper demonstrates that even a small change, such as flipping a single bit in the plaintext or key, leads to a substantial change in the ciphertext [13]. Performance evaluations indicate that the additional encryption step introduced does not significantly impact the overall processing time. The experimental results demonstrate an **avalanche effect** of approximately **52.34%** when altering a single bit in the plaintext and about **53.90%** when modifying one bit in the key. These outcomes confirm that the encryption process exhibits strong sensitivity to input changes, ensuring that the ciphertext is substantially different with each minor variation, thereby enhancing overall security [10][14][18]. #### IV. References - [1] Rohit Verma, Aman Kumar Sharma, "Cryptography: Avalanche effect of AES and RSA", International Journal of Scientific and Research Publications, Volume 10, Issue 4, April 2020. - [2] Jayant P. Bhoge, Dr. Prashant N. Chatur, "Avalanche Effect of AES Algorithm", International Journal of Computer Science and Information Technologies, Vol. 5 (3), 2014, 3101 – 3103 - [3] Amish Kumar , Mrs. Namita Tiwari, "EffectiveImplementation andAvalanche Effect Of AES", International Journal of Security, Privacy and Trust Management (IJSPTM), Vol. 1, No 3/4, August 2012. - [4] Ajeet Singh, "A New Approach to Enhance AvalancheEffect in Aes to ImproveComputer Security", Journal ofInformation Technology & Software Engineering, ISSN:2165-7866, Volume 5 • Issue 1 • 1000143. - [5] Md. Enamul Haque, SM Zobaed, Muhammad Usama Islamy, and Faaiza Mohammad Areef, "PerformanceAnalysis of Cryptographic Algorithmsfor Selecting Better Utilization on ResourceConstraint Devices", https://www.researchgate.net/publication/330879356. - [6] T. Jamil, "The rijndael algorithm," IEEE potentials, vol. 23, no. 2, pp. 36–38, 2004. - [7] A. Sachdev and M. Bhansali, "Enhancing cloud computing security using aes algorithm," International Journal of Computer Applications, vol. 67, no. 9, 2013. - [8] I. M. A. Fadul and T. M. H. Ahmed, "Enhanced security of rijndael algorithm using two secret keys," International Journal of Security and its applications, vol. 7, no. 4, pp. 127–134, 2013. - [9] S. Zobaed, M. A. Salehi, A. Zomaya, and S. Sakr, "Big data in the cloud." 2019. - [10] K. Akhil, M. P. Kumar, and B. Pushpa, "Enhanced cloud data security using aes algorithm," in 2017 International Conference on Intelligent Computing and Control (I2C2). IEEE, 2017, pp. 1–5. e-ISSN: 2456-3463 - [11] M. S. A. Forhad, S. Riaz, M. S. Hossain, and M. Das, "An improvement of advanced encryption standard," International Journal Of Computer Science And Network Security, vol. 18, no. 11, pp. 159–166, 2018. - [12] R. Mehla and H. Kaur, "Different reviews and variants of advance encryption standard," International Journal of Science and Research (IJSR), ISSN (Online), pp. 2319– 7064, 2014. - [13] P. Pimpale, R. Rayarikar, and S. Upadhyay, "Modifications to aes algorithm for complex encryption," IJCSNS International Journal of Computer Science and Network Security, vol. 11, no. 10, p. 183, 2011. - [14] R. Arora, A. Parashar, and C. C. I. Transforming, "Secure user data in cloud computing using encryption algorithms," International journal of engineering research and applications, vol. 3, no. 4, pp. 1922–1926, 2013. - [15] G. N. Selimis, A. P. Fournaris, and O. Koufopavlou, "Applying low power techniques in aes mixcolumn/invmixcolumn transformations," in 2006 13th IEEE International Conference on Electronics, Circuits and Systems. IEEE, 2006, pp. 1089–1092. - [16] P. Kumar and S. B. Rana, "Development of modified aes algorithm for data security," Optik, vol. 127, no. 4, pp. 2341–2345, 2016. - [17] P. Deshmukh and V. Kolhe, "Modified aes based algorithm for mpeg video encryption," in International Conference on Information Communication and Embedded Systems (ICICES2014). IEEE, 2014, pp. 1–5. - [18] Y. Khatri, R. Chhabra, N. Gupta, A. Khanna, and D. Gupta, "Secure modified aes algorithm for static and mobile networks," in International Conference on Innovative Computing and Communications. Springer, 2020, pp. 389–399. - [19] F. M. Amine and G. Abdelkader, "Hybrid approach of modified aes," in Cryptography: Breakthroughs in Research and Practice. IGI Global, 2020, pp. 129–141. - [20] M. E. Haque, S. Zobaed, M. U. Islam, and F. M. Areef, "Performance analysis of cryptographic algorithms for selecting better utilization on resource constraint devices," in 2018 21st International Conference of Computer and Information Technology (ICCIT). IEEE, 2018, pp. 1–6.