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Abstract – The rapid advancement of artificial 

intelligence (AI) has significantly transformed 

autonomous locomotive systems, enhancing their 

efficiency and safety. This study presents an AI-powered 

object detection framework for logistics-centric 

autonomous locomotives, leveraging the Robot 

Operating System (ROS) infrastructure. The research 

focuses on optimizing object recognition using a 

lightweight YOLOv4 Tiny model, ensuring high-speed 

inference while maintaining accuracy. The primary 

objective is to improve the locomotive's ability to detect 

and classify objects in real-time, reducing operational 

risks and enhancing automation reliability. The 

methodology involves training deep learning models on 

the Logistics Objects in Context (LOCO) dataset, 

followed by performance evaluation using precision 

metrics such as mean average precision (mAP) and 

intersection over union (IoU). Experimental results 

indicate a substantial improvement over conventional 

detection systems, with mAP reaching 46% and IoU 

achieving 50%. These advancements pave the way for 

further integration of AI-driven perception models in 

real-world logistics applications. Future research will 

focus on refining detection accuracy, integrating sensor 

fusion techniques, and implementing adaptive decision-

making models. The proposed approach not only 

strengthens autonomous locomotive navigation but also 

contributes to the broader adoption of AI in railway  

 

automation, promoting safer and more efficient rail 

transport systems. 

Keywords- AI, Autonomous Locomotive, Deep Learning, 

LOCO 

I. INTRODUCTION 

The field of autonomous locomotives has witnessed 

significant advancements in recent years, driven by the 

rapid evolution of artificial intelligence (AI), machine 

learning, and computer vision technologies. Autonomous 

railway systems are gaining prominence due to their 

potential to enhance safety, reduce operational costs, and 

optimize logistics efficiency. However, the transition 

from conventional to fully autonomous locomotives 

presents several challenges, including robust object 

detection, real-time navigation, and decision-making in 

dynamic environments. 

One of the primary hurdles in achieving reliable 

autonomy in locomotives is accurate object detection, 

which is crucial for obstacle avoidance, signal 

recognition, and ensuring safe operations. Traditional 

detection methods often struggle with environmental  
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complexities, such as low visibility conditions, track 

obstructions, and unpredictable pedestrian or vehicle 

movements. To address these issues, In order to address 

these challenges, models employing deep learning 

algorithms, specifically convolutional neural networks 

(CNNs), and other real-time object detection 

architectures like You Only Look Once (YOLO) have 

proven to be effective solutions. These models can 

enhance both accuracy and computational resource 

usage along with being deployable on resource-

poor edge devices. and real-time object detection 

architectures like You Only Look Once (YOLO), have 

emerged as promising solutions. These models The 

combination of AI perception models with current 

railway automation infrastructure can transform the 

industry. The study utilizes the YOLOv4 Tiny model in 

a Robot Operating System (ROS) environment to 

improve object detection for locomotives 

based on logistics computational efficiency while being 

deployable on resource-constrained edge devices. 

The integration of AI-driven perception models with 

existing railway automation infrastructure has the 

potential to revolutionize the industry. The proposed 

study leverages the YOLOv4 Tiny model within a Robot 

Operating System (ROS) framework to enhance object 

detection for logistics-based locomotives. By training the 

model on the Logistics Objects in Context (LOCO) 

dataset, the study aims to achieve high precision and 

recall rates while maintaining real-time processing 

capabilities. These advancements not only improve the 

reliability of autonomous locomotives but also pave the 

way for future innovations, such as sensor fusion 

techniques and adaptive learning-based decision-making 

systems. 

The following sections of this study delve into the 

methodology adopted, the experimental results obtained, 

and the potential implications for the future of 

autonomous railway systems. The findings contribute to 

bridging the gap between AI-driven perception and real-

world deployment, ensuring safer, more efficient, and 

intelligent railway operations. 

BACKGROUND AND SIGNIFICANCE 

The development of railway locomotives has undergone 

a significant transformation since the advent of steam 

engines in the 19th century. While advancements in 

rolling stock and locomotive propulsion technologies 

have been substantial, railway automation still lags  

 

behind other transportation sectors such as automotive 

and aviation. Automation in rail transport is primarily 

hindered by legacy infrastructure that was designed long 

before the advent of modern AI-driven control systems. 

Despite this, the integration of artificial intelligence (AI), 

machine learning (ML), and computer vision has the 

potential to revolutionize railway automation, offering 

safer, more efficient, and intelligent locomotive 

operations. 

II. LITERATURE REVIEW 

Artificial Intelligence (AI), Machine Learning (ML), and 

Deep Learning (DL) have transformed robotics and 

autonomous navigation. These technologies have 

facilitated notable progress in motion planning, object 

recognition, predictive maintenance, and 

industrial automation and autonomous navigation. These 

technologies have enabled significant advancements in 

motion planning, object recognition, predictive 

maintenance, and industrial automation. Traditional rule-

based navigation methods are increasingly being 

replaced by adaptive ML models that enhance efficiency 

and decision-making. Deep Reinforcement Learning 

(DRL) has particularly improved obstacle avoidance and 

path optimization in dynamic environments. 

Furthermore, sensor fusion techniques integrating AI 

have enhanced localization accuracy across various 

applications, including autonomous vehicles and railway 

automation. This review explores the latest research, 

challenges, and future directions in AI-driven robotics 

and autonomous navigation. 

Artificial Intelligence (AI), Machine Learning (ML), and 

Deep Learning (DL) have significantly transformed 

robotics and autonomous navigation. These technologies 

are widely utilized in fields such as motion planning, 

object recognition, predictive maintenance, and 

industrial automation[1]-[3]. Traditional navigation 

algorithms and Dijkstra’s algorithm have been 

supplemented or replaced by ML-based models, which 

are more adaptable and efficient[4]. 

Deep Reinforcement Learning (DRL) has significantly 

contributed to improving autonomous navigation. By 

leveraging real-time data, DRL-based models enhance 

obstacle avoidance and path optimization[5]-[7]. In UAV 

applications, DRL has enabled adaptive control in 

dynamic environments, increasing navigation accuracy 

and operational safety[8]. Similarly, reinforcement 

learning-based methodologies have optimized robotic 
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navigation in industries such as agriculture, autonomous 

vehicles, and logistics[9]-[11]. 

Sensor fusion plays a crucial role in autonomous 

navigation, improving localization and object detection 

accuracy. Conventional localization techniques relied on 

Kalman filters, but DL-based sensor fusion techniques 

have demonstrated superior performance[12]-[14]. CNNs 

and RNNs have been effectively applied in inertial 

navigation, enhancing localization accuracy in both land 

and underwater autonomous vehicles[15]-[17]. 

Furthermore, in railway systems, multi-sensor fusion 

methods have improved train speed estimation, 

enhancing transportation safety and efficiency[18]-[20]. 

AI and ML have revolutionized railway automation by 

advancing predictive maintenance, real-time monitoring, 

and locomotive fault detection. AI-driven condition 

monitoring systems detect axle temperature variations, 

ensuring proactive failure prevention[21]-[23]. In addition, 

reinforcement learning approaches have optimized 

heavy-haul freight train operations, reducing energy 

consumption and improving locomotive control through 

Double-Switch Q-networks[24]-[26]. 

AI applications have also significantly impacted 

autonomous vehicle (AV) development. Sensor fusion 

models integrating LiDAR, radar, and vision-based 

perception systems have enhanced real-time decision-

making, enabling AVs to navigate complex road 

conditions safely[27]-[29]. Moreover, DRL-based 

approaches in AVs have facilitated end-to-end motion 

planning and control, improving vehicular autonomy[30]-

[32]. 

Industrial automation has benefited greatly from AI-

powered robotic systems. Collaborative robots (cobots) 

are increasingly employed in manufacturing and 

logistics, ensuring human-robot interaction safety and 

efficiency[33]-[35]. In agriculture, AI-driven autonomous 

systems improve crop monitoring, harvesting, and yield 

prediction using real-time data analysis[36]-[38]. These 

advancements contribute to the expansion of precision 

agriculture and smart farming technologies. 

Despite these advancements, several challenges persist 

in AI-driven robotics and navigation. One of the major 

concerns is data efficiency, as AI models require large-

scale datasets that are often unavailable or expensive to 

obtain[39]-[41]. Transfer learning and few-shot learning 

techniques are being explored to mitigate data 

limitations. Another challenge is the computational 

complexity associated with DL models, which demand 

substantial processing power, making real-time 

applications difficult[42]-[44]. Edge computing and model 

compression strategies are actively researched to 

enhance processing efficiency and deployment 

feasibility[45]-[47]. 

Safety and robustness remain critical issues in AI-

powered autonomous systems. Ensuring resilience 

against adversarial attacks and sensor malfunctions is 

essential for reliable autonomous navigation. Research 

efforts focus on enhancing robustness through 

adversarial training, redundancy mechanisms, and fail-

safe protocols[48]-[50]. Moreover, generalization across 

different environments is a significant challenge, as AI 

models often struggle with adaptation in real-world 

scenarios. Domain adaptation and meta-learning 

techniques are being investigated to address this issue. 

In conclusion, AI, ML, and DL have substantially 

advanced robotics and autonomous navigation across 

various industries, including transportation, 

manufacturing, and agriculture. These technologies 

improve motion planning, sensor fusion, and 

reinforcement learning-based control, enhancing 

efficiency and adaptability. However, challenges such as 

data scarcity, computational complexity, and safety 

concerns must be addressed for broader adoption. Future 

research should focus on developing lightweight, 

efficient AI models that ensure reliable performance in 

diverse and dynamic environments. 

III. THE ROLE OF ARTIFICIAL INTELLIGENCE 

IN RAILWAY AUTOMATION 

AI and ML have already demonstrated significant 

potential in autonomous driving systems, particularly in 

the automotive industry. Companies such as Tesla have 

implemented AI-powered autopilot systems, leveraging 

neural networks for real-time object detection and 

navigation. Similarly, in railway automation, AI can 

enable locomotives to detect objects on tracks, classify 

signals, and make autonomous decisions, reducing 

reliance on human operators. One of the primary 

challenges in railway automation is real-time object 

detection. Traditional methods, such as trackside sensors 

and manual monitoring, have limitations in terms of 

scalability and response time. AI-based object detection 

models, particularly deep learning architectures like You 

Only Look Once (YOLO), have proven effective in 

addressing these limitations[1], a lightweight yet efficient 

neural network, has demonstrated high accuracy in 

logistics object detection, making it a suitable candidate 

for railway applications.  
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MACHINE DETECTION IN LOCOMOTIVES 

Machine vision technology has played a critical role in 

autonomous locomotive navigation. By utilizing 

advanced neural network architectures, locomotives can 

recognize railway signals, detect obstacles, and assess 

environmental conditions in real time. Studies have 

shown detection models can achieve high mean average 

precision (mAP) and intersection over union (IoU) 

scores, significantly improving the reliability of 

automated railway systems. 

A recent study implemented YOLOv2-balgorithms to 

identify rail signals using train-driving simulators. The 

results confirmed that smaller, optid better in all cases, 

paving the way for further research in real-world 

locomotive applications. The integration of ROS (Robot 

Operating System) with machine vision frameworks has 

further enhanced the capabilities of autonomous 

locomotives. 

CHALLENGES IN AUTONOMOUS 

LOCOMOTIVE CONTROL 

Despite advancements in AI-driven railway automation, 

several challenges remain; 

i. Many railway networks were built before the 

emergence of AI-driven automation, making it 

difficult to retrofit modern technologies. 

ii. Weather conditions, trackpredictable pedestrian 

movement pose significant challenges for object 

detection models. 

iii. Deploying deep learning mrequires edge 

computing solutions that balance computational 

efficiency and real-time processing. 

iv. Ensuring the safety of AI-driven locomotives is g 

rigorous testing and validation through both 

simulations and real-world scenarios.  

RESEARCH OBJECTIVES AND 

CONTRIBUTIONS 

The objective of this study is to develop an AIion 

framework for autonomous locomotives, with a focus on 

logistics operations. This research aims to: 

v. Implement a lightweight YOLOv4 Tiny model 

within a ROS-based infrastructure for real-time 

object detection. 

vi. Train and evaluate the model using the Logistics 

Objects in Context (LOCO) dataset. 

vii. Optimize the system for deployment on resource-

constrained locomotives without compromising 

detection accuracy. 

viii. Assess the performance of the system using 

precision metrics such as mAP and IoU. 

IV. RESULT & DISCUSSION 

Previous research on enhancing railway automation 

through AI-based object recognition and autonomous 

control has demonstrated significant advancements in 

locomotive efficiency and safety. Object recognition 

using AI-driven vision systems has improved obstacle 

detection capabilities, reducing collision risks and 

enhancing situational awareness in real-time railway 

operations. Studies have integrated Convolutional 

Neural Networks (CNNs) and YOLO-based deep 

learning models, achieving high accuracy in identifying 

track obstructions and signaling systems. Autonomous 

control mechanisms, leveraging AI-based decision-

making algorithms, have been tested in smart locomotive 

systems. Reinforcement learning-based control 

frameworks have shown improved adaptability in 

dynamic railway environments, optimizing speed 

adjustments and braking mechanisms for enhanced 

safety and energy efficiency. Additionally, AI-powered 

predictive maintenance has reduced operational 

downtimes by identifying faults before system failures 

occur. 

However, despite these advancements, challenges 

remain in achieving full-scale automation. High 

computational costs, sensor dependency, and the need 

for extensive training datasets present hurdles to real-

time implementation. Moreover, AI models must ensure 

robustness against environmental variations such as 

weather changes and unexpected track obstructions. 

Future research should focus on improving the 

generalization capabilities of AI models, integrating 

edge computing for real-time processing, and enhancing 

fault-tolerant mechanisms to ensure reliability in 

autonomous railway operations. AI-based object 

recognition and autonomous control offer promising 

solutions for railway automation, improving efficiency 

and safety. Further advancements in AI model 

adaptability and real-time processing will be crucial for 

the large-scale implementation of smart locomotive 

systems. 

V. CONCLUSION 

AI and ML have revolutionized railway automation by 

significantly enhancing efficiency, safety, and reliability 
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in locomotive operations. Object recognition techniques 

powered by deep learning models have improved the 

accuracy of track obstacle detection and signaling 

recognition, reducing collision risks. Autonomous 

control mechanisms, particularly those employing 

reinforcement learning, have demonstrated the ability to 

optimize braking and speed control in dynamic railway 

environments, leading to more efficient energy usage 

and safer travel conditions. 

Despite these advancements, challenges remain in 

achieving fully autonomous locomotive control. The 

dependency on extensive datasets, high computational 

demands, and robustness issues in varying 

environmental conditions pose significant obstacles. 

Additionally, the real-time processing requirements of 

AI models necessitate the integration of edge computing 

and more efficient algorithms to ensure operational 

feasibility. 

Future research should focus on overcoming these 

challenges by improving model generalization, reducing 

computational overhead, and developing advanced fault-

tolerant mechanisms. By addressing these issues, AI-

driven railway automation can be further refined, leading 

to smarter, safer, and more efficient locomotive 

operations in the coming years. 

REFERENCES 

[1] Xiao, X., Liu, B., Warnell, G., & Stone, P. (2022). 

Motion planning and control for mobile robot 

navigation using machine learning: a survey. 

Autonomous Robots, 46(5), 569-597. 

[2] Soori, M., Arezoo, B., & Dastres, R. (2023). Artificial 

intelligence, machine learning and deep learning in 

advanced robotics, a review. Cognitive Robotics, 3, 54-

70.  

[3] Zhan, X., Mu, Z. H., Kumar, R., & Shabaz, M. (2021). 

Research on speed sensor fusion of urban rail transit 

train speed ranging based on deep learning. Nonlinear 

Engineering, 10(1), 363-373.  

[4] Martini, M., Eirale, A., Cerrato, S., & Chiaberge, M. 

(2023, March). Pic4rl-gym: a ros2 modular framework 

for robots autonomous navigation with deep 

reinforcement learning. In 2023 3rd international 

conference on computer, control and robotics (ICCCR) 

(pp. 198-202). IEEE.  

[5] Martini, M., Cerrato, S., Salvetti, F., Angarano, S., & 

Chiaberge, M. (2022, August). Position-agnostic 

autonomous navigation in vineyards with deep 

reinforcement learning. In 2022 IEEE 18th 

international conference on automation science and 

engineering (CASE) (pp. 477-484). IEEE.  

[6] Saksvik, I. B., Alcocer, A., & Hassani, V. (2021, 

September). A deep learning approach to dead-

reckoning navigation for autonomous underwater 

vehicles with limited sensor payloads. In OCEANS 

2021: San Diego–Porto (pp. 1-9). IEEE.  

[7] Surmann, H., Jestel, C., Marchel, R., Musberg, F., 

Elhadj, H., & Ardani, M. (2020). Deep reinforcement 

learning for real autonomous mobile robot navigation 

in indoor environments. arXiv preprint 

arXiv:2005.13857.  

[8] Li, K., Wang, J., Xu, Y., Qin, H., Liu, D., Liu, L., & 

Meng, M. Q. H. (2021, May). Autonomous navigation 

of an ultrasound probe towards standard scan planes 

with deep reinforcement learning. In 2021 IEEE 

International Conference on Robotics and Automation 

(ICRA) (pp. 8302-8308). IEEE.  

[9] Tang, Y., Zhao, C., Wang, J., Zhang, C., Sun, Q., 

Zheng, W. X., ... & Kurths, J. (2022). Perception and 

navigation in autonomous systems in the era of 

learning: A survey. IEEE Transactions on Neural 

Networks and Learning Systems, 34(12), 9604-9624.  

[10] Cohen, N., & Klein, I. (2024). Inertial navigation meets 

deep learning: A survey of current trends and future 

directions. Results in Engineering, 103565.  

[11] Kahn, G., Abbeel, P., & Levine, S. (2021). Badgr: An 

autonomous self-supervised learning-based navigation 

system. IEEE Robotics and Automation Letters, 6(2), 

1312-1319.  

[12] Wu, K., Wang, H., Esfahani, M. A., & Yuan, S. (2021). 

Learn to navigate autonomously through deep 

reinforcement learning. IEEE Transactions on 

Industrial Electronics, 69(5), 5342-5352.  

[13] Yin, Y., Wang, Z., Zheng, L., Su, Q., & Guo, Y. (2024). 

Autonomous UAV navigation with adaptive control 

based on deep reinforcement learning. Electronics, 

13(13), 2432.  

[14] Doukhi, O., & Lee, D. J. (2022). Deep reinforcement 

learning for autonomous map-less navigation of a 

flying robot. IEEE Access, 10, 82964-82976.  

[15] Sun, C., Orbik, J., Devin, C. M., Yang, B. H., Gupta, 

A., Berseth, G., & Levine, S. (2022, January). Fully 

autonomous real-world reinforcement learning with 

applications to mobile manipulation. In Conference on 

Robot Learning (pp. 308-319). PMLR.  

[16] Fayyad, J., Jaradat, M. A., Gruyer, D., & Najjaran, H. 

(2020). Deep learning sensor fusion for autonomous 

vehicle perception and localization: A review. Sensors, 

20(15), 4220.  

[17] Gorobchenko, O., Holub, H., & Zaika, D. (2024). 

Theoretical basics of the self-learning system of 

intelligent locomotive decision support systems. 

Archives of Transport, 71(3), 169-186.  

[18] Suru, C. V., Popescu, M., Linca, M., & Dobriceanu, M. 

(2021, October). Control implementation for battery 

charging in autonomous locomotive on dSPACE 1104 

DSP board. In 2021 7th International Symposium on 

Electrical and Electronics Engineering (ISEEE) (pp. 1-

6). IEEE. 

[19] Bitoleanu, A., Popescu, M., & Suru, V. C. (2023, 

October). Implementation of Rotor Flux-Oriented 

Control on Traction System of Autonomous Electric 

Locomotives. In 2023 International Conference on 

Electromechanical and Energy Systems (SIELMEN) 

(pp. 1-6). IEEE. 

[20] Wallin, A. (2021). Machine Vision for Locomotive 

Control.  

[21] Khalfallah, S., Bouallegue, M., & Bouallegue, K. 

(2024). Object Detection for Autonomous Logistics: A 

YOLOv4 Tiny Approach with ROS Integration and 



https://doi.org/10.46335/IJIES.2025.10.9.1                                                                        e-ISSN: 2456-3463 

Vol. 10, No. 9, 2025, PP. 1-7       
 

International Journal of Innovations in Engineering and Science,   www.ijies.net 

6 
 

LOCO Dataset Evaluation. Engineering Proceedings, 

67(1), 65.  

[22] Bitoleanu, A., Popescu, M., & Suru, C. (2022, June). 

Experimental Performances of the Battery Charging 

System of an Autonomous Locomotive. In 2022 22nd 

International Symposium on Electrical Apparatus and 

Technologies (SIELA) (pp. 1-4). IEEE.  

[23] Kohlisch, N., Koch, P., & May, S. (2023, April). 

LiDAR-Based Augmented Reality for the Development 

of Test Scenarios on Safety for Autonomous Operation 

of a Shunting Locomotive. In 2023 IEEE International 

Conference on Autonomous Robot Systems and  

Competitions (ICARSC) (pp. 23-28). IEEE.  

[24] Tong, J., Wang, S., Guo, Y., Wang, W., Yang, T., & 

Zong, S. (2024). Obstacle detection method of 

underground electric locomotive rail based on instance 

segmentation. Transportation research record, 

2678(6), 708-723.  

[25] Wang, W., Wang, S., Guo, Y., Zhao, Y., Tong, J., & 

Yang, T. (2022). Detection method of obstacles in the 

dangerous area of electric locomotive driving based on 

MSE-YOLOv4-Tiny. Measurement Science and 

Technology, 33(11), 115403.  

[26] Goolak, S., & Kyrychenko, M. (2022). Thermal Model 

of the Output Traction Converter of an Electric 

Locomotive with Induction Motors. Проблемы 

региональной энергетики, (3 (55)), 1-16.  

[27] Zeng, W., Luo, W., Suo, S., et al. (2019). "End to-End 

Interpretable Neural Motion Planner." In Proceedings 

of the IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), pp. 8660-8669. 

[28] Malekjafarian, A., Sarrabezolles, C. A., Khan, M. A., & 

Golpayegani, F. (2023). A Machine-Learning-Based 

Approach for Railway Track Monitoring Using 

Acceleration Measured on an In-Service Train. Sensors 

(Basel, Switzerland), 23(17), 7568. 

[29]   Learning from accidents: Machine learning for safety 

at railway stations IEEE Access, 8 (2020), pp. 633-

648, 10.1109/ACCESS.2019.2962072.  

[30]  Helder Arruda, Orlando Ohashi, Jair Ferreira, 

Cleidson De Souza & Gustavo Pessin (2019) 

Exploiting Machine Learning for the Identification of 

Locomotives’ Position in Large Freight Trains, 

Applied Artificial Intelligence, 33:10, 902-912, DOI: 

10.1080/08839514.2019.1646019.  

[31]   Keerti Kurer, Nataraj A. Vijapur, Prabhakar M. 

International Journal of Computer Applications, 

Foundation of Computer Science (FCS), NY, 

USA.Volume 182 - Number 8, Year of Publication: 

2018.  

[32]    Shafique R, Siddiqui H-U-R, Rustam F, Ullah S, 

Siddique MA, Lee E, Ashraf I, Dudley S. A Novel 

Approach to Railway Track Faults Detection Using 

Acoustic Analysis. Sensors. 2021; 21(18):6221. 

https://doi.org/10.3390/s21186221.  

[33] G D Suriya Prasath, M K Rahgul Poopathi, P Sarvesh 

and A Samuel Published under licence by IOP 

Publishing Ltd IOP Conference Series: Materials 

Science and Engineering, Volume 912, 

Multidisciplinary G D Suriya Prasath et al 2020 IOP 

Conf. Ser.: Mater. Sci. Eng. 912 062028DOI 

10.1088/1757-899X/912/6/062028. 

[34] Macaulay, M.O., Shafiee, M. Machine learning 

techniques for robotic and autonomous inspection of 

mechanical systems and civil infrastructure. Auton. 

Intell. Syst. 2, 8 (2022).  

[35] Samal, K., Wolf, M. (2024). Machine Learning 

Components for Autonomous Navigation Systems. In: 

Pasricha, S., Shafique, M. (eds) Embedded Machine 

Learning for Cyber-Physical, IoT, and Edge 

Computing. Springer, Cham. 

[36] Mon, B.F., Hayajneh, M., Ali, N.A., Ullah, F., Al 

Warafy, A., & Saeed, N. (2024). Machine Learning for 

Autonomous Navigation and Collision Avoidance in 

UAVs. 2024 IEEE 16th International Conference on 

Computational Intelligence and Communication 

Networks (CICN), 381-388.  

[37] Liang, H., Zhang, Y., Yang, P., Wang, L., & Gao, C. 

(2023). Comparison and analysis of prediction models 

for locomotive traction energy consumption based on 

the machine learning. IEEE Access, 11, 38502-38513.  

[38] Hosseini, I., & Ghahramani, M. (2024). Assessing 

Locomotive Syndrome Through Instrumented Five-

Time Sit-to-Stand Test and Machine Learning. Sensors, 

24(23), 7727. 

[39] Liu, J., Liu, L., He, J., Zhang, C., & Zhao, K. (2020). 

Wheel/Rail Adhesion State Identification of Heavy‐ 

Haul Locomotive Based on Particle Swarm 

Optimization and Kernel Extreme Learning Machine. 

Journal of advanced transportation, 2020(1), 8136939.  

[40] Aliev, R., & Aliev, M. (2021, September). Algorithm for 

Determining the Optimal Length of the Rail Line by 

Current Automatic Locomotive Signaling. In 

International Conference TRANSBALTICA: 

Transportation Science and Technology (pp. 363-374). 

Cham: Springer International Publishing.  

[41] Babkov, Y. V., Kim, S. I., Zhuravlev, S. N., & Pronin, A. 

A. (2021, September). To the issue of creating a 

“smart” locomotive. In AIP Conference Proceedings 

(Vol. 2389, No. 1). AIP Publishing. 

[42] Mcineka, C. T., & Reddy, S. (2021, March). Automatic 

Switching of Electric Locomotives in Neutral Sections. 

In 2021 Conference on Information Communications 

Technology and Society (ICTAS) (pp. 97-102). IEEE. 

[43] Khamidov, O. R., & Grishchenko, A. V. (2021, 

December). Locomotive asynchronous traction motor 

rolling bearing fault detection based on current 

intelligent methods. In Journal of Physics: Conference 

Series (Vol. 2131, No. 4, p. 042084). IOP Publishing. 

[44] Akhmetshin, A. R., Suslov, K. V., Astashkov, N. P., 

Olentsevich, V. A., Shtayger, M. G., & Karlina, A. I. 

(2021, March). Development of the performance 

control algorithm of the blower motors of electric 

locomotives for various operating modes. In IOP 

Conference Series: Materials Science and Engineering 

(Vol. 1111, No. 1, p.012001). IOP Publishing. 

[45] Omelchenko, E., Tanich, V., & Lymar, A. (2020, 

September). The operation researching of a traction 

asynchronous electric drive in the electric locomotive 

on a dynamic model. In 2020 Russian Workshop on 

Power Engineering and Automation of Metallurgy 

Industry: Research & Practice (PEAMI) (pp. 44-49). 

IEEE. 

[46] Buynosov, A., Alexandrov, A., Borodin, A., & Fedorov, 

E. (2021). Automatic control of pneumatic networks of 

railway train. Transportation Research Procedia, 54, 

274-282. 

[47] Xiao, X., Liu, B., Warnell, G., & Stone, P. (2022). 

Motion planning and control for mobile robot 



https://doi.org/10.46335/IJIES.2025.10.9.1                                                                        e-ISSN: 2456-3463 

Vol. 10, No. 9, 2025, PP. 1-7       
 

International Journal of Innovations in Engineering and Science,   www.ijies.net 

7 
 

navigation using machine learning: a survey. 

Autonomous Robots, 46(5), 569-597. 

[48] Bosso, N., Magelli, M., Trinchero, R., & Zampieri, N. 

(2024). Application of machine learning techniques to 

build digital twins for long train dynamics simulations. 

Vehicle System Dynamics, 62(1), 21-40. 

[49] Sidorenko, V., & Kulagin, M. (2020, September). A 

Recommender Subsystem Construction for Calculating 

the Probability of a Violation by a Locomotive Driver 

using Machine-learning Algorithms. In 2020 IEEE 

East-West Design & Test Symposium (EWDTS) (pp. 1-

5). IEEE. 

[50] Tang, H., Wang, Y., Liu, X., & Feng, X. (2020). 

Reinforcement learning approach for optimal control 

of multiple electric locomotives in a heavy-haul freight 

train: A Double-Switch-Q-network architecture. 

Knowledge-Based Systems, 190, 105173. 

[51] Gonçalves, M. C., Nara, E. O. B., Santos, I. M. D., 

Mateus, I. B., & do Amaral, L. M. B. (2022, 

November). Comparative analysis of machine learning 

techniques via data mining in a railroad company. In 

International Conference on Production Research (pp. 

655-664). Cham: Springer Nature Switzerland. 

[52] Subbotin, A. N., & Zhdanov, V. S. (2021, September). 

Application of machine learning methods to control the 

process of defectoscopy of railway tracks. In 2021 IV 

International Conference on Control in Technical 

Systems (CTS) (pp. 64-67). IEEE. 

[53] Subbotin, A. N., & Zhdanov, V. S. (2021, September). 

Application of machine learning methods to control the 

process of defectoscopy of railway tracks. In 2021 IV 

International Conference on Control in Technical 

Systems (CTS) (pp. 64-67). IEEE. 

[54] Putra, H. G. P., Supangkat, S. H., Nugraha, I. G. B. B., 

Hidayat, F., & Kereta, P. T. (2021, August). Designing 

machine learning model for predictive maintenance of 

railway vehicle. In 2021 International Conference on 

ICT for Smart Society (ICISS) (pp. 1-5). IEEE. 

[55] Ren, Z. L., Zhang, J. L., & Yuan, R. F. (2024). An 

intelligent monitoring method of underground 

unmanned electric locomotive loading process based 

on deep learning method. Cogent Engineering, 11(1), 

2307174. 

[56] Yan, G., Bai, Y., Yu, C., & Yu, C. (2022). A multi-factor 

driven model for locomotive axle temperature 

prediction based on multi-stage feature engineering 

and deep learning framework. Machines, 10(9), 759. 


