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Abstract – Lung cancer continues to be one of the 

deadliest cancers globally, with early detection playing 

a critical role in improving survival rates. In this work, 

we present an advanced deep learning framework for 

lung cancer segmentation using an Attention-Enhanced 

U-Net architecture with a Hybrid Loss Function. The 

model was trained and evaluated on a publicly available 

CT scan dataset from Kaggle. This dataset includes 

diverse axial CT slices with annotations, providing a 

suitable foundation for training robust segmentation 

models. To overcome challenges such as class 

imbalance and tumor heterogeneity, our approach 
integrates spatial attention mechanisms into the U-Net 

architecture and employs a hybrid loss combining Dice 

and Focal losses. Our proposed model achieves a 

maximum segmentation accuracy of 92%, with a Dice 

score of 0.89 and F1-score of 0.83, outperforming 

traditional U-Net baselines. These results demonstrate 

the effectiveness of the proposed method in accurately 

identifying small and irregular tumor regions, making it 

a promising tool for aiding clinical diagnosis. 

Keywords- Attention Mechanism, Convolutional Neural 

Network, CT Scan, Dice Loss, Focal Loss, Hybrid Loss 

Function, Lung Cancer, Segmentation, U-Net. 

INTRODUCTION 

Lung cancer remains the leading cause of cancer-

related deaths worldwide, accounting for approximately 

1.8 million deaths annually. Early detection and accurate 

localization of lung tumors significantly influence 

patient prognosis and the success of subsequent 

treatment strategies such as surgery, radiotherapy, or 

chemotherapy. Computed Tomography (CT) imaging is 

the primary modality used for non-invasive detection 

and assessment of pulmonary lesions due to its high 

spatial resolution and widespread clinical availability. 

However, manual segmentation of lung tumors from CT 

scans is labor-intensive, time-consuming, and subject to 

substantial inter-observer variability. The task is further 

complicated by several intrinsic challenges, including: 

 Tumor Heterogeneity: Lung tumors vary 

greatly in size, shape, texture, and intensity, 

making them difficult to distinguish from 

surrounding tissues. 

 Class Imbalance: Lesions often occupy a very 

small region in the CT volume relative to the 

background, which can bias conventional 

learning-based segmentation models toward the 

majority class (non-tumor regions). 

 Complex Anatomical Structures: The presence 

of blood vessels, bronchi, and other chest 

structures with similar radiodensity values 

further confounds the task of accurate 

segmentation. 

To address these challenges, deep learning-based 

approaches, particularly the U-Net architecture, have 

gained widespread popularity in medical image 

segmentation. U-Net's encoder-decoder structure with 

skip connections enables precise localization while 

capturing contextual information. Despite its strengths, 

vanilla U-Net still struggles with small and irregular 

tumor regions, often leading to incomplete or 

fragmented segmentations. 
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The primary motivation behind this work is to enhance 

the performance of U-Net for lung cancer segmentation 

by making it more sensitive to small and complex 

lesions while addressing the issue of class imbalance. 

Conventional loss functions like cross-entropy often 

underperform in highly imbalanced settings, and the 

standard U-Net architecture may not fully exploit salient 

tumor features amidst anatomical noise. 

LITERATURE REVIEW 

Lung cancer has now become the most frequently 

diagnosed cancer and is also one of the leading causes of 

death, with a mortality rate that exceeds other types of 

cancer such as breast cancer [1]. Before the twentieth 

century, this condition was erroneously classified as 

pneumonia or tuberculosis; therefore, it was poorly 

recognized, with only 140 cases reported in the literature 

at that time. Currently, this disease has a 5-year survival 

rate of less than 20%, with tobacco being the main risk 

factor. 

According to the authors of [2], lung cancer screening is 

defined as the probable identification of undiagnosed 

cancer in people who are asymptomatic. It is performed 

through tests or procedures that are easy to administer to 

the general population. Initially, chest X-rays were used 

to detect lung cancer. However, this test did not reduce 

mortality rates. Other methods, such as sputum cytology 

with or without chest X-rays, were later used, but these 

tests also did not yield good results [2]. In fact, 

traditional chest X-rays were previously used as a 

diagnostic method. However, this study had low 

sensitivity for small tumors, less than 1 centimeter in 

size; therefore, low-dose computed tomography is 

currently considered more sensitive for the early 

detection of this disease [3]. 

This disease has a high mortality rate related to the lack 

of symptoms in early stages. This means that diagnosis 

is not confirmed until later stages, resulting in fewer 

treatment options and, in some cases, in patients who are 

not cured. Otherwise, if this disease is diagnosed in its 

early stages, it significantly increases the chances of 

survival and the option of receiving successful treatment. 

If treatment is administered promptly, the 10-year 

survival rate is 88% [4]. Therefore, different strategies 

are currently being sought to allow for early detection of 

lung cancer, as this would improve survival rates and 

prognosis. Given the above, this leads us to ask the 

following question: How does the use of artificial 

intelligence allow for improved early detection of lung 

cancer? 

Artificial intelligence, in conjunction with low-dose 

computed tomography, improves both the sensitivity and 

specificity of early lung cancer diagnosis and provides a 

more accurate analysis with the goal of reducing false 

positives and false negatives. Artificial intelligence 

performs a multi-parameter analysis, helping physicians 

detect lung cancer early and reduce mortality rates from 

this disease [5]. However, its sensitivity is not superior 

to that of a radiologist, although the speed of diagnosis is 

increased, as artificial intelligence makes the diagnosis 

in 10 seconds, while a specialized physician makes it in 

20 minutes [6]. There are some studies that propose an 

algorithm that considers CT image data in terms of shape 

and texture in order to classify lung nodules using the 

EO technique [7]. In this proposed algorithm, a “Fourier-

Shape Descriptor” and a “Gray Level Co-occurrence 

Matrices” based surface descriptor were used to describe 

the heterogeneity of nodules and Convolutional Neural 

Networks (CNN) were used to train the features of 

nodes. Another study focused on traditional CBT 

techniques and the manually designed system does not 

seem to be ideal for early lung cancer diagnosis [8]. 

Some scientists have developed a SVM model based on 

epidemiology material, clinical symptoms and miRNA 

(microRNA) biomarkers by using Support Vector 

Machines (SVM) as a classifier for the diagnosis of lung 

cancer [9]. In recent years, rapid progress has been made 

in pattern recognition and image processing techniques. 

Studies on lung cancer detection classification are 

increasing day by day. There are some methods in the 

literature to distinguish various obstructive lung diseases 

based on texture analysis of thin-section CT images [10]. 

The authors of [9] presented the texture features of 

Solitary Pulmonary Nodules detected and evaluated by 

CT. A total of 67 features were extracted in the study 

and approximately 25 features were selected after 300 

genetic generations. The authors of [11] used Support 

Vector Machines (SVM) as a classifier. In their study, 

they created a SVM model for lung cancer diagnosis 

based on microRNA biomarkers, clinical symptoms and 

epidemiology material. It is understood that they 

achieved an accuracy rate of 90.1% with the proposed 

model. The authors of [12] focused on a linear method. 

They used the “linear discriminant analysis” technique, 

where the regularization parameter is calculated by the 

traditional cross-validation algorithm. A feature set 

suitable for researching medical data was needed for 

disease requirement estimation. Many evolutionary 
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algorithms were applied to obtain the optimal feature 

selection. The authors of [13] developed a cancer 

classification based on Artificial Neural Networks 

(ANN) for CT images. The statistics used for the 

classification model were partially successful. The 

authors of [14] used Taxonomic Difference Indexes and 

SVM technique for lung cancer diagnosis. The success 

rate they obtained was explained as 98.11%. The authors 

of [15] proposed a model that classifies the normal lung 

anatomy structure. They extracted CT image features 

using geometric, statistical and gray level characteristics. 

As a result, the accuracy success rate was measured as 

84% and the sensitivity as 97.14%. The authors of [16] 

worked with DNN classifier for brain tumor 

classification, where DNN was combined with wavelet 

transform and principal component analysis. 

Accordingly, similar pixels are created as a cluster and 

the cluster formed in the affected region is used. As a 

result, they reported 84.6% accuracy, 82.5% sensitivity 

and 86.7% specificity. The authors of [17] presented a 

method with 75.01% accuracy using the deep learning 

technique Auto Encoder. The authors of [18] achieved a 

sensitivity rate of 73.40% and a specificity rate of 

82.20% using deep belief network. The authors of [19] 

studied lung cancer on multi-scale, two-layer CNN in 

LIDC database. The accuracy rate obtained was recorded 

as 86.84%. 

Research Gaps: While numerous studies have explored 

lung cancer detection using traditional machine learning 

techniques such as SVM, ANN, and feature-based 

CNNs, most of these approaches rely heavily on 

handcrafted features and often lack the capacity to 

generalize across heterogeneous tumor presentations. 

Furthermore, many existing models struggle with 

accurately segmenting small or irregularly shaped 

lesions, especially in highly imbalanced datasets where 

tumor regions occupy a minimal portion of the image. 

Despite the progress made, limited work has been done 

on integrating attention mechanisms with deep learning 

architectures to selectively focus on tumor regions, and 

few approaches have effectively addressed the combined 

challenge of class imbalance and anatomical complexity 

in CT images. To bridge this gap, our study proposes an 

Attention-based U-Net architecture enhanced with a 

hybrid loss function that combines Dice and Focal loss. 

This model is designed to improve sensitivity to small 

lesions and enhance boundary accuracy, while 

effectively mitigating class imbalance. The incorporation 

of spatial attention gates allows the network to suppress 

irrelevant background features and focus on 

diagnostically significant regions, making it a robust tool 

for clinical lung cancer segmentation. 

PROBLEM DEFINITION 

We define the problem as: 

Given a 2D CT scan volume 𝑋𝜖ℝ𝐻×𝐷, predict a binary 

segmentation map 𝑌 ∈ {0,1}𝐻×𝐷, where each voxel is 

classified as either tumor or non-tumor. 

The goal is to design a deep neural network that: 

 Accurately segments tumors of varying sizes 

and shapes. 

 Is robust to intensity variability and noise. 

 Handles class imbalance effectively during 

training. 

KEY CONTRIBUTIONS 

To tackle the aforementioned challenges, this paper 

introduces an Attention-based U-Net with a Hybrid Loss 

Function. The key contributions of our work are as 

follows: 

 Attention-Augmented U-Net Architecture: We 

integrate spatial attention gates into the U-Net’s 

skip connections, allowing the model to focus 

on salient tumor regions and suppress irrelevant 

background features. This mechanism improves 

sensitivity to small and irregular lesions without 

significantly increasing computational 

complexity. 

 Hybrid Loss Function: We propose a novel 

combination of Dice loss and Focal loss to 

mitigate class imbalance and encourage the 

model to focus more on hard-to-segment areas. 

The hybrid loss is particularly effective in 

enhancing boundary accuracy and segmenting 

small nodules. 

 Comprehensive Evaluation on Public Lung 

Cancer Datasets: We conduct extensive 

experiments on benchmark datasets, 

demonstrating that our approach outperforms 

the baseline U-Net and several state-of-the-art 

models in terms of Dice coefficient, precision, 

recall, and boundary accuracy. 

 Analysis of Interpretability: Through 

visualizations of attention maps, we provide 

insights into how the attention mechanism 

enhances model focus, offering interpretability 

that is valuable in clinical settings. 
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PROPOSED METHODOLOGY 

To address the inherent challenges in lung cancer 

segmentation—such as class imbalance, complex 

anatomical structures, and variability in tumor 

morphology—we propose a comprehensive deep 

learning framework based on an attention-augmented U-

Net architecture. Our model incorporates spatial 

attention gates within the U-Net skip connections and 

employs a hybrid loss function that combines Dice loss 

with Focal loss to enhance segmentation performance, 

especially for small and irregular tumor regions. 

Figure 1 illustrates the overall workflow of the proposed 

Attention U-Net framework. The pipeline begins with 

preprocessing of input CT images, including intensity 

normalization and spatial resizing, followed by 

segmentation using the enhanced U-Net model with 

attention mechanisms. The final segmentation output is 

refined using a post-processing step based on 

Conditional Random Fields (CRF) to improve boundary 

precision. 

Input CT Image

Pre-Processing

Attention-Enhanced Residual U-Net

Determine Hybrid Loss

Lung Cancer Lesion Segmentation

 

Fig. 1- Workflow of the Proposed Attention U-Net 

Framework for Lung Cancer Segmentation  

The detailed methodology, including data preprocessing, 

network architecture, loss function design, and post-

processing techniques, is described in the following 

section and its subsections: 

Data Preprocessing 

CT images used in medical imaging, particularly for 

lung cancer analysis, are often obtained from different 

scanners, institutions, and acquisition protocols. These 

variations lead to inconsistencies in voxel intensity 

distributions and spatial resolutions, which can 

negatively impact the performance and generalizability 

of deep learning models. To address these issues, we 

apply a series of standardization techniques to the raw 

CT data, including intensity normalization and spatial 

resizing, to ensure consistent input for model training 

and inference. 

Intensity Normalization: CT image intensities are 

measured in Hounsfield Units (HU), where the intensity 

of each voxel 𝑥 represents the radiodensity of tissue. 

However, due to differences in scanning protocols, 

contrast enhancement, and reconstruction algorithms, the 

absolute intensity ranges can vary significantly across 

datasets. Therefore, intensity normalization is a critical 

preprocessing step to reduce inter-scan variability and 

help the network learn invariant features. 

CT scans exhibit varying intensity ranges due to 

differences in acquisition protocols. To standardize the 

input data, we apply normalization and resizing: 

CT images are pre-processed by normalization and 

resizing. Each voxel intensity 𝑥 is scaled as: 

𝑥′ =
𝑥 − 𝜇

𝜎
 

           (1) 

Where 𝜇  and 𝜎 are the mean and standard deviation of 

the intensities in the dataset. 

 Resizing: CT images are resized to a fixed 

resolution (e.g., 256×256) to ensure uniform 

input dimensions. This transformation centers 

the data on zero and scales it to have unit 

variance, making the intensity distribution more 

consistent across scans. In cases where global 

normalization is preferred 𝜇  and 𝜎 can also be 

computed over the entire dataset rather than per 

scan. 

In practice, to further limit outlier influence and 

highlight lung parenchyma, we clip voxel 

intensities to a specific Hounsfield Unit 

window (e.g., [−1000, 400] [-1000, 400] 

[−1000, 400]), which covers the typical range 

of lung tissue and tumors, before applying 

normalization. 

 Spatial Resizing: For uniform model input, all 

scans are resized to a consistent spatial 

resolution. In our implementation, each axial 
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slice is resized to a fixed 2D resolution of 256 × 

256 pixels using bilinear interpolation. This 

resizing ensures that all images fed into the 

network have the same dimensions, which is 

essential for batch processing and consistent 

convolutional operations. 

U-Net Architecture 

The U-Net architecture is a fully convolutional neural 

network specifically designed for biomedical image 

segmentation. Its success stems from its unique 

symmetric structure that combines high-level semantic 

features and fine-grained localization cues. In the 

context of lung cancer segmentation, U-Net is 

particularly effective in identifying tumor boundaries, 

which are often small, irregular, and embedded in 

complex anatomical backgrounds. 

The U-Net model consists of two main components: 

1. Contracting Path (Encoder): This path captures 

the semantic context of the image by 

progressively downsampling the input and 

increasing feature abstraction. 

2. Expansive Path (Decoder): This path recovers 

the spatial details and outputs a segmentation 

map of the same resolution as the input. Skip 

connections between corresponding layers in 

the encoder and decoder help preserve 

localization information lost during 

downsampling. 

3. Each block in the encoder consists of two 3×3 

convolutions, each followed by a ReLU 

activation and a 2×2 max pooling operation: 

𝑧(𝑙) = 𝑅𝑒𝐿𝑈(𝑊(𝑙) ∗ 𝑧(𝑙−1) + 𝑏(𝑙))          (2) 

Where 𝑊(𝑙 )and  𝑏(𝑙)  are the weights and biases 

at layer 𝑙 , and ∗ denotes convolution. 

4. The decoder path uses up-convolutions 

(transposed convolutions) and concatenates 

features from the encoder to refine 

segmentation: 

𝑧(𝑙) = 𝑅𝑒𝐿𝑈(𝑊(𝑙) ⋆ 𝑧(𝑙−1) + 𝑏(𝑙))          (3) 

Where ⋆ represents transposed convolution. 

Loss Function 

To handle class imbalance and emphasize overlapping 

areas between prediction and ground truth, we use the 

Dice coefficient loss: 

ℒ𝐷𝑖𝑐𝑒 = 1 −
2 ∑ 𝑝𝑖𝑔𝑖+ℇ𝑖

∑ 𝑝𝑖+𝑖 ∑ 𝑔𝑖+ℰ𝑖
   (4) 

Where 𝑝𝑖 and 𝑔𝑖  denote the predicted and ground truth 

labels respectively, and ℰ is a small constant to avoid 

division by zero. 

Optimization 

The model is trained using the Adam optimizer: 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂.
𝑚𝑡̂

√𝑣𝑡̂
+ 𝜖         (5) 

Where 𝜃 are model parameters, 𝜂 is the learning rate, 𝑚𝑡̂ 

and 𝑣𝑡̂ are the bias corrected estimates of the first and 

second moments of the gradients. 

Architectural Modifications 

Attention U-Net 

Incorporate attention gates to focus on relevant lung 

regions and suppress irrelevant features. 

Attention mechanism for gating: 

𝛼𝑖 = 𝜎(𝑊𝑥
𝑇𝑥𝑖 + 𝑊𝑔

𝑇𝑔𝑖 + 𝑏)        (6) 

Where 𝑥𝑖 is the feature map, 𝑔 is the gating signal, and 

𝜎 is the sigmoid function. 

Impact: Enhances segmentation accuracy by focusing on 

tumor regions. 

Hybrid Loss Function 

To address class imbalance (small tumors vs. large 

background), we combine: 

Dice Loss (for region overlap): 

ℒ𝐷𝑖𝑐𝑒 = 1 −
2 ∑ 𝑝𝑖𝑔𝑖+ℇ𝑖

∑ 𝑝𝑖+𝑖 ∑ 𝑔𝑖+ℰ𝑖
       (7) 

Where 𝑝𝑖   = predicted probability, 𝑔𝑖  = ground truth, 

and 𝜖  avoids division by zero. 

Focal Loss (for hard-to-classify pixels): 

𝐿𝐹𝑜𝑐𝑎𝑙 = − ∑ 𝛼(1 − 𝑝𝑖)
𝛾 log(𝑝𝑖)𝑖              (8) 

Where 𝛾 adjusts the focus on misclassified pixels. 
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The final hybrid loss: Combine Dice loss with focal loss 

to handle extreme class imbalance: 

ℒ = 𝜆. ℒ𝐷𝑖𝑐𝑒 + (1 − 𝜆). ℒ𝐹𝑜𝑐𝑎𝑙         (9) 

Where 𝜆  balances the two losses. 

It improves segmentation on small tumors and edge 

boundaries. 

Post-processing & Refinement 

CRF as Post-processing: Use Conditional Random 

Fields (CRFs) to refine the segmented boundaries: 

𝐸(𝑥) = ∑ 𝜓𝑢(𝑥𝑖) + ∑ 𝜓𝑝(𝑥𝑖 , 𝑥𝑗)

𝑖<𝑗𝑖

 

(10) 

It smoothens the segmentation map and improves 

boundary precision. 

Theoretical Contributions 

Attention Mechanism: 

 Dynamically weights feature maps, improving 

segmentation of small tumors. 

 Reduces false positives by suppressing 

irrelevant regions. 

Hybrid Loss Function: 

 Combines Dice loss (region-based) and Focal 

loss (pixel-wise), improving performance on 

imbalanced datasets. 

Expected Outcomes: 

 Higher segmentation accuracy (Dice Score, 

IoU) compared to traditional U-Net. 

 Better handling of small tumors due to focal 

loss and attention. 

 Robustness to intensity variations via proper 

normalization. 

RESULTS AND DISCUSSION 

Dataset Description 

The dataset used in this study is sourced from Kaggle 

and comprises CT scan images specifically curated for 

lung cancer analysis [20]. It contains annotated axial CT 

slices organized by patient ID, where each image is 

labeled as cancerous or non-cancerous based on expert 

radiological evaluation. The dataset includes both 

DICOM and PNG formats, providing flexibility for 

preprocessing and model training. The images capture a 

wide range of tumor morphologies, sizes, and anatomical 

locations, reflecting real-world clinical variability. This 

diversity makes the dataset particularly suitable for 

training deep learning models aimed at robust lung 

cancer segmentation. To maintain consistency and 

reproducibility, all scans were normalized and resized to 

a standard 256×256 resolution prior to input into the 

proposed model. 

Evaluation Parameters 

Table 1- Evaluation Parameters 

TP (True 
Positive) 

Number of tumor pixels correctly predicted 
as tumor by the model. 

TN (True 
Negative) 

Number of non-tumor pixels correctly 
predicted as non-tumor. 

FP (False 
Positive) 

Number of non-tumor pixels incorrectly 
predicted as tumor. 

FN (False 
Negative) 

Number of tumor pixels incorrectly 
predicted as non-tumor. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
       (11) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                (12) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
       (13) 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
        (14) 

Results 

To evaluate the effectiveness of the proposed Attention 

U-Net with Hybrid Loss, we conducted extensive 

experiments on publicly available lung CT datasets. The 

performance of our model was compared against the 

baseline U-Net architecture using standard evaluation 

metrics including Dice Score, Intersection over Union 

(IoU), small tumor recall, and robustness to intensity 

variation. 

The results clearly demonstrate the superiority of our 

approach in segmenting small and irregularly shaped 

tumors, a known challenge in conventional models. 

Quantitative improvements are observed across all key 

metrics, indicating that the integration of attention 

mechanisms and the hybrid loss formulation 

significantly enhances model accuracy and robustness. 
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Additionally, visual comparisons show improved boundary precision and reduced false positives. 

 

Fig. 2- Visual Comparison of Segmentation Outputs Between Traditional U-Net and Proposed Attention U-Net 

Figure 2 presents qualitative segmentation results on 

representative CT slices comparing the traditional U-Net 

model and the proposed Attention U-Net. The ground 

truth, predictions from the baseline model, and 

predictions from our enhanced model are shown side by 

side. The Attention U-Net exhibits visibly improved 

boundary precision and better detection of small tumor 

nodules. It effectively reduces false positives in non-

tumor regions while capturing more complete tumor 

shapes, particularly in complex anatomical settings. 

Table 2- Quantitative Performance Metrics for 

Traditional U-Net vs. Proposed Attention U-Net 

Model Dice 

Score 

IoU Small 

Tumor 

Recall 

Robustness to 

Intensity 

Variance (std) 

Traditional 0.82 0.74 0.68 0.07 

U-Net 

Proposed 
Attention U-

Net 

0.89 0.83 0.81 0.03 

 

Table 2 summarizes the numerical results of the 

segmentation models across multiple evaluation 

parameters, including Dice Score, IoU, small tumor 

recall, and robustness to intensity variation (measured 

via standard deviation of predictions). The Attention U-

Net demonstrates superior performance in all metrics, 

achieving a Dice Score of 0.89 and a notable 

improvement in small tumor recall (0.81 vs. 0.68 for 

traditional U-Net). These results validate the 

effectiveness of incorporating attention mechanisms and 

a hybrid loss function for more reliable lung cancer 

segmentation. 

 

Fig. 3- Metric-Wise Bar Chart Comparing Model Performance 
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Figure 3 provides a bar chart visualization comparing the 

performance of the traditional U-Net and the proposed 

Attention U-Net across key segmentation metrics. Each 

bar represents a specific evaluation criterion — Dice 

Score, IoU, small tumor recall, and robustness to 

intensity changes. The visual clearly highlights the 

consistent improvements achieved by the Attention U-
Net across all categories, reinforcing its robustness and 

clinical applicability in segmenting challenging tumor 

structures. 

Table 3- Evaluation Metrics for Traditional U-Net and 

Proposed Attention U-Net 
Model Accuracy Precision Sensitivity 

(Recall) 

F-

Score 

Traditional U-
Net 

0.87 0.79 0.68 0.73 

Proposed 
Attention U-Net 

0.92 0.86 0.81 0.83 

Table 3 presents additional evaluation metrics—

Accuracy, Precision, Sensitivity (Recall), and F-Score—

for both the traditional U-Net and the proposed Attention 

U-Net models. These metrics provide a broader 

understanding of model performance beyond overlap-

based measures like Dice and IoU. The proposed 

Attention U-Net achieves higher accuracy (0.92), 

reflecting improved classification of both tumor and 

non-tumor pixels. Notably, precision and recall 

improvements indicate fewer false positives and better 

true positive capture, respectively. The F-Score, which 

balances precision and recall, further confirms the 

model’s effectiveness in handling small and challenging 

tumor regions, solidifying its suitability for clinical 

diagnostic support. 

 

Table 4- Comparative Analysis of Lung Cancer Segmentation Techniques with Previous Research Works 

Model / Technique Accuracy Precision Recall (Sensitivity) F1-Score 

SVM with miRNA biomarkers [9] 90.10% -- -- -- 

SVM with Taxonomic Indexes [14] 98.11% -- -- -- 

CNN on LIDC Database [19] 86.84% -- -- -- 

Auto Encoder [17] 75.01% -- -- -- 

Deep Belief Network [18] -- -- 73.40% 82.20% 

Traditional U-Net (Baseline) 87% 79% 68% 73% 

Proposed Attention U-Net (This Paper) 92% 86% 81% 83% 

 

Table 4 presents a comparative analysis of the proposed 

Attention U-Net model against several prior lung cancer 

detection techniques cited in the literature. Traditional 

machine learning approaches such as SVM with miRNA 

biomarkers [9] and SVM with Taxonomic Indexes [14] 

reported high accuracy (90.10% and 98.11% 

respectively), but lacked comprehensive metric 

reporting, particularly in terms of recall and F1-score, 

which are crucial for evaluating model performance on 

imbalanced medical datasets. Deep learning models like 

CNN on the LIDC database [19], Auto Encoder [17], 

and Deep Belief Networks [18] showed varying results, 

with the latter achieving a recall of 73.40% and an F1-

score of 82.20%. The baseline U-Net model used in this 

study achieved an accuracy of 87%, but its recall was 

relatively low at 68%, indicating challenges in 

identifying small or irregular tumors. In contrast, the 

proposed Attention U-Net architecture significantly 

improved overall performance, achieving the highest 

accuracy (92%), along with marked improvements in 

precision (86%), recall (81%), and F1-score (83%). 

These results underscore the effectiveness of integrating 

attention mechanisms and hybrid loss functions for more 

accurate and robust lung cancer segmentation in CT 

scans. 

CONCLUSION 

In this study, we introduced an Attention-Enhanced U-

Net with a Hybrid Loss Function for the task of lung 

cancer segmentation from CT images. By incorporating 

spatial attention gates within the U-Net architecture and 

combining Dice and Focal loss functions, the model 

effectively addresses the challenges of class imbalance, 

intensity variability, and tumor heterogeneity. Evaluated 

on a comprehensive Kaggle dataset, the proposed model 

achieved a highest recorded accuracy of 92%, along with 

a Dice score of 0.89 and an F1-score of 0.83, showing 

significant improvement over conventional methods in 

detecting small and irregular lesions. These outcomes 

underline the model’s potential to support radiologists in 

making faster and more accurate diagnoses. Moving 
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forward, future work can extend this framework to 3D 

volumetric segmentation and integrate multi-modal 

imaging inputs such as PET-CT to further enhance 

diagnostic reliability and tumor characterization. 
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