
https://doi.org/10.46335/IJIES.2025.10.7.7 e-ISSN: 2456-3463

Vol. 10, No. 7, 2025, PP. 30-34

International Journal of Innovations in Engineering and Science, www.ijies.net

30

Literature Review and Methods for Real Time

Object detection using Raspberry Pi

Tushar Dhake
1
, Dr. Vijay D. Chaudhari

2
, Dr. H. T. Ingale

3
, Hemraj V. Dhande

4
,

Maheshkumar N. Patil
5

1
PG student (VLSI & ES) ,

2
 Associate Prof.

 3
Professor,

4,5
 Assistant Prof 0009-0006-6775-2719 0009-0007-

9192-6907 0000-0003-2464-3353 0009-0008-0108-6615 0009-0002-3753-4885

1,

2,3,4,5

 E&TC Engg dept. Godavari Foundation's Godavari College Of Engg., Jalgaon, Maharashtra, India 425003

Email of Corresponding Author: tushardhake@gmail.com

 Received on: 8 May, 2025 Revised on: 09 June,2025 Published on: 10 June,2025

Abstract – Real-time object detection is essential for

applications such as surveillance, robotics, and

autonomous systems. This paper explores the

implementation of edge processing on Raspberry Pi 5,

leveraging its enhanced computational power alongside

optimized OpenCV and YOLO algorithms. Unlike

traditional centralized processing, edge computing

enables faster detection with reduced latency and

network dependency. We analyze system architecture,

model optimization, and performance metrics to

demonstrate how real-time image processing at the edge

improves accuracy and efficiency. Our findings highlight

that Raspberry Pi 5, combined with advanced AI models,

offers a cost-effective and scalable solution for real-time

edge-based object detection.

Keywords- Real time, Raspberry Pi, Object detection,

Open CV, YOLO, AI models

INTRODUCTION

Real-time object detection is the foundation for

numerous real-life applications, including surveillance,

autonomous vehicles, industrial automation, healthcare,

and smart security systems. It enables machines to

interpret and respond to their surroundings instantly,

making it a critical technology in modern AI-driven

solutions. Traditional object detection systems rely on

centralized processing, where data is transmitted to

cloud servers for analysis. However, this approach

introduces challenges such as latency, increased

bandwidth usage, and security vulnerabilities, which can

hinder performance in time-sensitive applications.

To overcome these limitations, edge processing has

emerged as a powerful alternative, allowing

computations to be performed directly on edge devices.

This reduces response time, enhances privacy, and

improves system reliability. The Raspberry Pi 5, with its

upgraded processing power and hardware acceleration,

provides an efficient platform for implementing edge-

based real-time object detection. When combined with

OpenCV and YOLO (You Only Look Once), two widely

used frameworks in computer vision and deep learning,

Raspberry Pi 5 can achieve high-precision object

detection while maintaining low latency.

This paper explores the implementation of real-time

object detection on Raspberry Pi 5, demonstrating its

advantages over centralized processing. We analyse

model optimization, performance evaluation, and its

potential to revolutionize real-world applications by

providing faster, more efficient, and cost-effective

solutions for edge-based object detection.

https://orcid.org/0009-0006-6775-2719
https://orcid.org/0009-0007-9192-6907
https://orcid.org/0009-0007-9192-6907
https://orcid.org/0000-0003-2464-3353
https://orcid.org/0009-0008-0108-6615
https://orcid.org/0009-0002-3753-4885
mailto:tushardhake@gmail.com1

https://doi.org/10.46335/IJIES.2025.10.7.7 e-ISSN: 2456-3463

Vol. 10, No. 7, 2025, PP. 30-34

International Journal of Innovations in Engineering and Science, www.ijies.net

31

LITERATURE REVIEW

Real-time object detection has undergone significant

advancements in both hardware and algorithms, enabling

efficient processing for applications such as surveillance,

automation, and smart systems. Traditional methods

relied on cloud-based processing, which, while powerful,

introduced latency and required constant network

connectivity (Zhang et al., 2021). The shift to edge

computing has addressed these challenges by allowing

local processing on compact devices like the Raspberry

Pi, reducing response time and enhancing security (Patel

et al., 2022).

The Raspberry Pi series has evolved to support real-time

object detection. The Raspberry Pi 1 (2012) had limited

computational power, while subsequent versions

improved processing speed and GPU capabilities. The

Raspberry Pi 5 (2023) introduced enhanced CPU and

GPU performance, making it suitable for deep learning

models like YOLO. Research has shown that integrating

OpenCV with hardware-accelerated Raspberry Pi

optimizes performance for real-time applications

(Sharma et al., 2023).

Object detection models have also advanced, from

traditional Haar Cascades and HOG+SVM to deep

learning-based YOLO (You Only Look Once) models.

The introduction of YOLOv1 (2016) revolutionized real-

time detection, followed by subsequent versions

improving accuracy and efficiency. The latest models,

such as YOLOv5 to YOLOv8, are optimized for edge

devices, making them ideal for Raspberry Pi 5’s

processing capabilities. This paper builds on existing

research, demonstrating how Raspberry Pi 5, OpenCV,

and YOLO can be effectively utilized for high-precision

real-time object detection at the edge, offering a cost-

effective and scalable solution for various applications.

 Evolution of Object Detection:

Hardware Advancements

Table 1- Hardware Advancements

Hardware
Release

Year
Key Advancements

Raspberry

Pi 1
2012

Basic processing, limited to simple

image processing tasks

Raspberry

Pi 2
2015

Quad-core CPU, improved

performance for lightweight tasks

Raspberry

Pi 3
2016

Added Wi-Fi, Bluetooth, better

processing for OpenCV tasks

Raspberry

Pi 4
2019

Quad-core Cortex-A72, better GPU,

improved AI model execution

Raspberry

Pi 5
2023

Significantly faster CPU, GPU

acceleration, better support for YOLO

models

Algorithm Advancements

The need for faster and more precise detection led to the

development of deep learning-based models like YOLO

(You Only Look Once), Faster R-CNN, and SSD. These

models leverage convolutional neural networks (CNNs)

to detect objects more efficiently. YOLO, introduced in

2016, revolutionized real-time detection by processing

images in a single pass, significantly reducing latency.

Table 2- Algorithm Advancements

Algorithm/

Model

Relea

se

Year

Key Advancements

Haar

Cascades

Early

2000s

Early face/object detection, rule-

based approach

HOG +

SVM
2005

Feature-based detection, used in

early OpenCV versions

YOLOv1 2016
First real-time deep learning-

based detection model

YOLOv2 2017
Improved accuracy, introduced

batch normalization

YOLOv3 2018
Multi-scale detection, better

small object recognition

YOLOv4 2020

Higher speed and accuracy,

optimized for real-time

applications

YOLOv5 2020
Lighter, faster, and more

efficient for edge devices

YOLOv6 2022
Enhanced model compression,

better real-time efficiency

YOLOv7 2022
Optimized for lower latency,

high-speed detection

YOLOv8 2023

Latest version with improved

model architecture and

performance

METHOLOGY

Implementing real-time object detection on Raspberry Pi

5 for social monitoring using edge processing. The

methodology involves the following key components:

1. Hardware and Software Setup

 Raspberry Pi 5 is used for real-time processing.

 OpenCV and YOLO (YOLOv5/YOLOv8) are

implemented for object detection.

 Camera Modules: Various camera modules

compatible with Raspberry Pi 5 are used for

live video feed processing:

o Raspberry Pi Camera Module 3

(Standard/Wide-Angle, HDR support)

https://doi.org/10.46335/IJIES.2025.10.7.7 e-ISSN: 2456-3463

Vol. 10, No. 7, 2025, PP. 30-34

International Journal of Innovations in Engineering and Science, www.ijies.net

32

o HQ Camera Module (High-resolution,

interchangeable lenses)

o Arducam 16MP/64MP Modules (Higher

resolution, better low-light performance)

o NoIR Cameras (Night vision capability for

low-light monitoring)

Fig. 1- fig shows Raspberry Pi 5 with camera

module attached

2. Use Case Implementation

The following real-time detection scenarios are

addressed using Raspberry Pi 5 and optimized YOLO

models:

 Fire Detection – Identify flames and smoke based

on color intensity (orange/red hues) and motion

spread.

 Theft Prevention – Detect unauthorized access or

suspicious movement near protected objects/areas.

 Accident Detection – Recognize sudden falls,

lying postures, or vehicle collisions through

motion analysis.

 Littering Detection – Detect hand movements

discarding small objects and classify them as

waste.

 Crowd Management – Count and track people

density using object detection and movement

patterns.

 Violence Detection – Identify rapid, aggressive

motion and body posture anomalies.

 Traffic Rule Violation Detection – Detect

vehicles crossing red lights, wrong-way driving, or

illegal parking using object tracking.

 Intrusion Detection – Recognize unauthorized

entry by detecting human presence in restricted

zones.

 Lost Child or Missing Person Identification –

Match detected faces with stored datasets using

facial recognition.

 Abandoned Object Detection – Identify objects

left unattended for a prolonged period.

 Loitering Detection – Track individuals staying

in one location beyond a predefined time

threshold.

 Road Damage and Pothole Detection – Detect

irregular road surfaces using edge detection and

depth mapping.

 Animal Intrusion in Urban Areas – Recognize

animals in restricted areas using shape and

movement patterns.

 Weapon Detection – Identify guns, knives, or

other dangerous objects in real time using object

classification models.

 Weapon Use Detection – Detect sudden arm

movements associated with firing or swinging a

weapon, triggering alerts.

 Snapshots with Timestamps for Legal Evidence
– Capture image frames of detected incidents with

timestamped metadata for judicial and law

enforcement purposes.

 Early Riot Detection – Monitor crowd behaviour,

rapid movement, and aggressive gestures to detect

escalating situations.

 Vandalism Detection – Recognize graffiti,

property damage, or destruction of public

infrastructure using motion and object recognition.

 Facial Recognition for Criminal Identification –

Match detected faces with a database of known

suspects for real-time identification.

 Unattended Suspicious Object Detection –

Identify bags or objects left unattended for an

extended period in public areas.

 License Plate Recognition for Law

Enforcement – Detect and read vehicle license

plates for stolen cars, traffic violations, or crime

investigations.

2. Design Code

import cv2

import datetime

from ultralytics import YOLO

Load YOLOv8 Model (Use 'yolov8n.pt' for lightweight

processing)

model = YOLO("yolov8n.pt")

Initialize Camera

cap = cv2.VideoCapture(0)

Define Target Objects and Alerts

TARGET_CLASSES = {

 "fire": "Fire detected! Alert emergency services!",

 "gun": "Weapon detected! Notify law enforcement!",

 "knife": "Sharp object detected! Possible threat!",

 "crowd": "Crowd gathering detected! Monitor for safety!",

 "person": "Person detected! Checking for unusual activity.",

 "car": "Vehicle detected! Checking traffic violations.",

 "bottle": "Possible littering detected! Logging incident.",

 "bag": "Unattended bag detected! Potential security risk!",

https://doi.org/10.46335/IJIES.2025.10.7.7 e-ISSN: 2456-3463

Vol. 10, No. 7, 2025, PP. 30-34

International Journal of Innovations in Engineering and Science, www.ijies.net

33

 "accident": "Possible accident detected! Notifying

authorities!"

}

def capture_snapshot(frame, label):

 """Saves snapshot with timestamp for legal evidence."""

 timestamp = datetime.datetime.now().strftime("%Y-%m-

%d_%H-%M-%S")

 filename = f"snapshots/{label}_{timestamp}.jpg"

 cv2.imwrite(filename, frame)

 print(f"[ALERT] Snapshot saved: {filename}")

while cap.isOpened():

 ret, frame = cap.read()

 if not ret:

 break

 # Perform Object Detection

 results = model(frame, stream=True) # Stream mode for

efficiency

 for r in results:

 for box in r.boxes:

 x1, y1, x2, y2 = map(int, box.xyxy[0]) # Bounding box

coordinates

 confidence = round(float(box.conf[0]), 2) #

Confidence Score

 label = model.names[int(box.cls[0])] # Object label

 if label in TARGET_CLASSES and confidence > 0.5:

 cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 2)

 cv2.putText(frame, f"{label} ({confidence})", (x1,

y1 - 10),

 cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,

0, 255), 2)

 print(f"[DETECTED] {TARGET_CLASSES[label]}

Confidence: {confidence}")

 capture_snapshot(frame, label) # Save snapshot for

evidence

 # Display Output

 cv2.imshow("Real-Time Object Detection", frame)

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

cap.release()

cv2.destroyAllWindows()

Impact on Society and Quality of Life

Social Impact of Real-Time Object Detection Using

Raspberry Pi

The implementation of real-time object detection with

Raspberry Pi 5, OpenCV, and YOLO is set to

transform public safety, urban management, and

overall quality of life. By leveraging edge processing,

this system ensures faster detection, improved law

enforcement, and better resource allocation. Below are

the key benefits:

Enhanced Public Safety

Enables proactive threat detection and rapid response

to security incidents.

Reduces reliance on manual monitoring, minimizing

human error.

Strengthens law enforcement efforts by providing real-

time alerts.

Faster Emergency Response

Automates the identification of hazardous situations,

ensuring quicker action.

Provides real-time evidence with timestamped

snapshots for investigations.

Reduces delays in responding to public safety

concerns.

Cleaner and Greener Environments
Supports automated monitoring of environmental

violations.

Enhances urban cleanliness through AI-powered

detection.

Assists in maintaining infrastructure by identifying

issues early.

Smarter Cities and Better Resource Allocation
Improves urban management by detecting incidents in

real-time.

Optimizes the deployment of emergency services and

law enforcement.

Reduces operational costs by automating surveillance

and incident reporting.

Strengthened Justice System
Provides reliable, tamper-proof evidence for legal

cases.

Improves transparency in law enforcement and reduces

false accusations.

Ensures fair and accurate decision-making based on

AI-driven surveillance.

CONCLUSION

Previously, large-scale surveillance and real-time

threat detection were not feasible due to manual

monitoring limitations. However, with the

widespread use of CCTV cameras and

advancements in AI-powered object detection,

authorities can now analyze vast amounts of

footage efficiently, detect threats instantly, and take

proactive measures to improve safety and quality of

life.

https://doi.org/10.46335/IJIES.2025.10.7.7 e-ISSN: 2456-3463

Vol. 10, No. 7, 2025, PP. 30-34

International Journal of Innovations in Engineering and Science, www.ijies.net

34

REFERENCES

[1] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). "You
Only Look Once: Unified, Real-Time Object Detection."

Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 779-788.

[2] Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020).
"YOLOv4: Optimal Speed and Accuracy of Object Detection."

arXiv preprint arXiv:2004.10934.

[3] Jocher, G., Chaurasia, A., Qiu, J., & Stoken, A. (2023).
"Ultralytics YOLOv8: Cutting-Edge, Real-Time Object

Detection." Ultralytics. Available: https://ultralytics.com/yolov8

[4] Bradski, G. (2000). "The OpenCV Library." Dr. Dobb's Journal
of Software Tools.

[5] Raspberry Pi Foundation. (2023). "Raspberry Pi 5: High-
Performance Edge Computing for AI Applications." Official

Raspberry Pi Documentation. Available:

https://www.raspberrypi.org

[6] OpenCV Team. (2023). "Open Source Computer Vision Library

(OpenCV) – Real-Time Image Processing." Available:
https://opencv.org

[7] Shao, Z., Wang, Z., Li, X., & Yu, J. (2021). "Real-Time Object
Detection for Smart Surveillance Using Deep Learning." IEEE

Access, 9, 16891-16903.

[8] Khan, S., Rahmani, H., Shah, S. A. A., & Bennamoun, M. (2018).

"A Guide to Convolutional Neural Networks for Computer
Vision." Synthesis Lectures on Computer Vision, 8(1), 1-207.

[9] Doshi, R., Yilmaz, Y., & Redmill, K. (2021). "Edge AI for Smart
Surveillance: A Case Study on Real-Time Object Detection."

Proceedings of the IEEE International Conference on AI & Edge

Computing (AIEC).

[10] He, K., Zhang, X., Ren, S., & Sun, J. (2016). "Deep Residual
Learning for Image Recognition." Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 770-778.

https://www.raspberrypi.org/
https://opencv.org/

