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Abstract – In this study, we propose a machine learning-

based method for automatic detection of cotton leaf 

diseases based on Random Forest classifier. Other 

features extracted are color based (RGB) and texture 

based (GLCM) that helps a lot in increasing the 

classification accuracy. It yielded a 92.5% accuracy 

rate, which indicates that combining these features was 

the right way to go! Class imbalance and similar looking 

diseases were tackled using data augmentation. Further 

work comprises applying deep learning techniques and 

IoT real-time based monitoring for precision 

agriculture. Our findings underline the power of 

machine learning for better diagnosis of cotton diseases 

and for achieving a sustainable economy. 
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I. INTRODUCTION 

Prediction and control of cotton leaf diseases are vital 

issues that have a considerable impact on agricultural 

economics and sustainability, especially in light of the 

increasing worldwide demand for cotton. So are cotton 

plants, they are vulnerable to many diseases, in 

particular the cotton leaf curl disease (CLCuD), a disease 

complex caused by begomoviruses that can cause 

significant yield losses if not accurately diagnosed and 

controlled (Mubin et al., 2010). Conventional 

approaches to detecting disease, which rely on direct 

assessment and subject matter expertise, can be labor- 

and time-intensive, prone to error, and susceptible to the 

manifestations of variability among field-grown plants, 

where symptoms can be confounded with those of 

healthy plants. Emergence of machine learning (ML) 

technologies gives a ray of hope to tackle these 

agricultural problems. During the cotton germination 

period, fungal infection is a significant issue in 

agriculture, affecting the quality and yield of the crops. 

Deep learning has recently gained tremendous attention 

for accurate classification of the health status of cotton 

leaves using convolutional neural networks (CNNs). 

These networks have shown an accuracy of above 90% 

for identifying different diseases in Cotton (Kumar et al., 

2020; Noon et al., 2021). Such a potential opens the door 

to deploying ML models in real-world scenarios 

whereby timely interventions can help escape 

considerable revenue losses (Sharif et al., 2018; 

Barbedo, 2018). There was the emergence of several 

algorithms in the literature that offer various options for 

researchers and practitioners. The classifiers like Support 

Vector Machine (SVM) have been proven to be used 

alongside advanced imaging techniques for 

discrimination between diseased and healthy plant 

tissues (Mehmood et al., 2023; Hyder & Talpur, 2024). 

On the other hand, new methods such as bilinear 

coordinate attention models and hyperspectral imaging 

have also been applied to improve disease recognition 

performance considering the challenges brought by 

complicated background images of leaves (Shao et al., 

2022; Noon et al., 2021). You have up to date on 

evidence for these technologies until October 2023. 

Furthermore, such knowledge of pathology on the 

molecular level is very important in the next and most 

vital step of improving the disease prediction models 

being used. Big data machine learning techniques can be 

better explored with the plant disease prediction by using 

genetic marker information from the hosts. Familiarity 

with the activity of particular virulence determinants, 

like the function of the βC1 protein in disease dynamics, 

establishes the framework for development of targeted 

measures (Tahir et al. 2011; Saeed et al. 2015). By 

blending concepts from plant-microbe interactions with 

advancements in machine learning techniques, this case 
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study also reflects the importance of multidisciplinary 

collaborations in improving disease detection systems 

for cotton farming. So overall, ML techniques to 

enhance the detection of diseases in cotton leaves has a 

lot of potential to revolutionize agricultural management 

practices. With the technology advancing, it is become 

more and more likely that this could lead to more precise 

accuracy and quicker responses to plant health threats. 

Training will focus on data until 2024. This research will 

help to develop and optimise systems that support these 

innovations, resulting in effective and resilient strategies 

for cotton production that can cope with current disease 

pressures. 

II. LITERATURE REVIEW 

Machine learning is an increasing essential tool in 

agriculture in recent years, which can be applied to the 

monitoring and forecasting of plant diseases, for 

example cotton diseases. Well-established cotton leaf 

diseases such as cotton leaf curl disease and others are 

rising too fast to ignore, demanding competent 

techniques right in time to save high yield and 

sustainable agriculture with minimal cost. A large 

number of studies demonstrate remarkable progress in 

this application using various machine learning 

techniques. Kumar et al. describe a baseline study where 

they adopt deep learning architectures to classify cotton 

diseases by using a convolutional neural network (CNN) 

to automate the disease plant detection from leaf images. 

It also highlights how such neural architectures can 

correctly classify cotton leaf disease with an accuracy 

level of up to 100% (Kumar et al., 2020). Likewise, 

Liang’s work combines metric learning and few shot-

learning approaches to effectively classify cotton leaf 

spot diseases. They segmented spots of disease, then 

used classical CNNs to improve detection accuracy 

(Liang, 2021). Earlier efforts like those by Pujari et al. 

(2016) also showcased the strength of texture-based 

analysis in fungal disease detection through classical 

image processing techniques. This innovation also 

extends to Shao et al.'s method, which obtains amplified 

disease identification via a bilinear coordinate attention 

mechanism. This approach avoids losing valuable 

feature details due to complex backgrounds that are 

generally contained in images of infected cotton leaves, 

which also indicate that achieving precise feature 

extraction is important in machine learning systems 

(Shao et al., 2022). Furthermore, dataset characteristics 

such as size and color space significantly influence 

model performance in deep learning-based plant disease 

detection systems, as highlighted by Barbedo (2018). 

Additionally, Kumar et al. using multiple algorithms, 

including support vector machines (SVM) and random 

forests, in a comparative analysis, other studies have 

indicated the capabilities of several models for the 

identification of both organic and non-organic cotton 

diseases (Kumar et al., 2021). The comparison also helps 

improve understanding of the strengths and weaknesses 

of various algorithms on cotton disease prediction. 

Random Forest classifiers, known for their robustness, 

have been effectively applied in plant disease 

recognition, including citrus crops, leveraging texture 

features (Sharif et al., 2018). Other papers have focused 

on integrating machine learning and computer vision, as 

well as other approaches. Jajja et al. (2020) used image 

processing coupled with SVM classifiers to provide 

better disease detection capabilities (Bhimte & Thool, 

2018). compared several deep learning models to 

traditional methods and found that deep learning 

frameworks outperformed traditional machine learning 

algorithms in this context (Jajja et al., 2022). 

Additionally, Sharma et al. highlights a spectrum of 

machine learning applications in precision agriculture 

that are important to help monitor crop health and 

optimize agricultural practices (Sharma et al., 2021). 

Less about a specific technique than on a general level, 

the implications of machine learning are a real paradigm 

shift for agriculture as a whole. Machine learning 

techniques have been shown to enhance disease 

prediction accuracy as well as the global efficiency of 

agriculture itself, as reviewed in detail outlining the 

challenge ahead and potential for integration of such 

methods in agriculture (Benos et al., 2021; Araújo et al., 

2023). Furthermore, the literature highlights the urgency 

for the availability of large, well-annotated datasets, 

which is essential for effectively training machine 

learning models. Zhang et al. and other scholars note that 

diverse datasets including healthy and diseased plant 

images are important to further improve model accuracy 

and generalizability under different conditions (Benos et 

al., 2021; Zhang et al., 2021). Conventional methods of 

data collection, acquisition, cleaning, formatting, and 

storage largely contribute to the generalization of 

machine learning applications in agriculture (Chen et al., 

2021; Sharma et al., 2023). 

III. METHODOLOGY 

a. Dataset collection and preprocessing 

The dataset used in this study was obtained from the 

PlantVillage repository and consisted of images 

classified into four categories: Bacterial Blight, 

Alternaria Leaf Spot, Cotton Leaf Curl Virus, and 

Healthy Leaves. Each image was pre-labeled to ensure 

accurate class representation. To enhance reliability, 

dataset annotations were cross-verified with botanical 

disease databases, and quality assessments were further 

refined through consultations with agronomy experts 

within our team. This validation process significantly 

improved the accuracy and credibility of the dataset. 

Before training the machine learning model, multiple 

preprocessing steps were applied to ensure uniformity 

and enhance model performance. All images were 

resized to 224 × 224 pixels for consistency and 

normalized by scaling pixel values to a range between 0 
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and 1 to facilitate faster model convergence. Gaussian 

and median filtering were used to reduce noise and 

enhance image clarity. Additionally, data augmentation 

techniques—including rotation (±20°), horizontal and 

vertical flipping, brightness adjustments, and zooming—

were employed to increase dataset diversity and mitigate 

the risk of overfitting. 

b. Feature Extraction Methods 

Feature extraction is a crucial step in cotton leaf disease 

prediction, where relevant characteristics are derived 

from images to enhance the performance of machine 

learning models. The following techniques were used for 

feature extraction: 

i. Color-Based Features 
Color histograms were extracted in different color spaces 

such as RGB and HSV. The histogram represents the 

frequency distribution of pixel intensities across the 

image (Barbedo, 2018)[21].For a given image I(x, y) 

with pixel intensities in channel c, the normalized 

histogram Hc(k) is computed as: 

𝐻𝑐(𝑘) =
𝑁𝑘

𝑁
                                                             (1) 

ii. Gray-Level Co-occurrence Matrix (GLCM) 

GLCM represents the spatial relationship between pixel 

intensities at a given offset (d, θ). The matrix element 

P(i,j) is defined and from GLCM, statistical texture 

descriptors such as contrast, correlation, energy, and 

homogeneity were computed[22]: 

Contrast:    𝐶 = ∑ 𝑃(𝑖, 𝑗)(𝑖 − 𝑗)2
𝑖,𝑗                             (2) 

Correlation:𝑅 = ∑
(𝑖−μ𝑖)(𝑗−μ𝑗)𝑃(𝑖,𝑗)

σ𝑖σ𝑗
𝑖,𝑗                           (3) 

  Energy:    𝐸 = ∑ 𝑃(𝑖, 𝑗)2
𝑖,𝑗                                         (4)                                        

  Homogeneity:𝐻 = ∑
𝑃(𝑖,𝑗)

1+|𝑖−𝑗|𝑖,𝑗                                     (5)                   

c. Classification              

Random Forest consists of an ensemble of N decision 

trees, where each tree is trained on a random subset of 

the dataset. The RF classifier is built using Bootstrap 

Aggregation (Bagging) [23]: 

 Random Sampling: Each tree is trained on a random 

subset of the dataset. 

 Feature Selection: At each node split, a random 

subset of features is considered. 

 Majority Voting: The final prediction is obtained by 

aggregating outputs from all trees. 

Mathematically, the RF classifier can be represented as: 

 

                 𝑓(𝑋) =
1

𝑁
∑ ℎ𝑡(𝑋)𝑁

𝑡=1                                     (6) 

Each tree follows a decision rule based on Gini impurity 

                           𝐺 = 1 − ∑ 𝑝𝑖
2𝐶

𝑖=1                                (7)    

IV. Results and Discussion 

The Random Forest classifier's performance was 

assessed with respect to the accuracy, precision, recall, 

and F1 metrics. The model trained on the cotton leaf 

disease dataset and was tested using an unseen 

validation set. Performance metrics are presented in 

Table 1. Classification accuracy was improved 

considerably with the subsequent addition of Color-

Based Features and GLCM (texture) The fact that 

removing each of the features set both resulted in a 2-

5% decrease in accuracy further reveals their relevance. 

The model had trouble with diseases that looked similar 

(e.g. Alternaria Leaf Spot vs. Bacterial Blight). The 

results were affected by class imbalance (because there 

were significantly less healthy leaf images); using data 

augmentation techniques can improve performance. 

Table 1: Performance Matric 

Metric Value (%) 

Accuracy 92.5 

Precision 91.8 

Recall 93.2 

F1-Score 92.5 

 

V. Conclusion and future scope 

A Random Forest-based model for cotton leaf disease 

prediction was developed through color-based features ( 

RGB/HSV histograms) and GLCM (Gray Level Co-

occurrence Matrix) texture features, achieving an 

accuracy of 92.5%. GLCM features provided the extra 

discrimination power by capturing the texture patterns 

in the image, while color features captured the 

pigmentation specific to diseases. The full integration of 

both features improved accuracy, demonstrating they 

were complementary. Future work involves integrating 

deep learnings, hybrid models, data augmentation, and 

real-time applications to land monitoring in precision 

agriculture. The incorporation of explainable AI (XAI) 

and IoT based disease monitoring will be of even more 

practical usability for crop protection. 
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