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Abstract – The emergence of deep learning models has 

significantly improved the accuracy of anomaly 

detection in surveillance, crowd analysis, and other real-

world applications. However, the challenge remains to 

balance performance with computational efficiency, 

particularly for real-time applications. This study 

assesses the performance and computational efficiency 

of several deep learning model architectures on the 

broadly used dataset: UCSD. We examine models such 

as CNN, Transformer, LSTM, Knowledge Distillation, 

Ensemble, Multi-Task Learning, and Hybrid 

Architectures, comparing precision, recall, F1-score, 

AUC, inference time, memory usage, and FLOPs. Our 

results indicate that while ensemble models are 

computationally intensive, but offer better accuracy. On 

the other hand, lightweight models like MobileNetV2 

combined with Transformer or Knowledge Distillation 

maintain a balance between performance and efficiency, 

making them appropriate for real-time deployment. This 

paper provides valuable insights for selecting the right 

model based on the trade-offs between accuracy and 

computational requirements in anomaly detection tasks. 

Keywords- Deep Learning, Anomaly Detection, 

Computational Efficiency, Knowledge Distillation, 

Ensemble, Hybrid Models 

.INTRODUCTION 

Anomaly detection is a critical task in various 

applications, such as surveillance systems, crowd 

management, and security monitoring. With the 

progression of deep learning techniques, anomaly 

detection systems have grown to deliver increasingly 

accurate results [1, 9]. However, the trade-off between 

model performance and computational efficiency 

persists as a key challenge, particularly in real-time 

applications where latency and resource constraints are 

prime concerns [10, 13]. This paper focuses on 

addressing this challenge by observing and comparing 

the performance and computational efficiency of 

combinations of deep learning models across the 

commonly used dataset: UCSD. 

The aim of this paper is to provide a wide-ranging 

assessment of different models in terms of their ability to 

detect anomalies while considering the computational 

resources required. The study covers models like 

Convolutional Neural Networks (CNN)[4], Long Short-

Term Memory (LSTM) networks [1], Transformer 

models[24], Knowledge Distillation techniques [3, 8], 

Ensemble models [15], Multi-Task Learning approaches 

[14], and Hybrid architectures [23, 25, 26]. By analyzing 

various performance metrics, such as precision, recall, 

F1-score, and computational efficiency (inference time, 

memory usage, and FLOPs), we aim to offer insights 

into the most effective models for anomaly detection 

tasks in terms of both accuracy and deployment 

efficiency.  
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LITERATURE REVIEW 

The field of anomaly detection has seen significant 

improvements with the acceptance of deep learning 

models. Earlier studies in anomaly detection mainly 

focused on traditional methods, such as clustering and 

statistical models, which were often limited in their 

accuracy and scalability. However, with the introduction 

of CNNs, LSTMs, and, more recently, Transformer 

models, the ability to detect complex patterns and 

temporal anomalies in videos has significantly enhanced 

[1, 24]. 

Models like ResNet and VGG16 have showcased better 

performance in image-based anomaly detection by 

effectively extracting spatial features from input frames 

[4, 11]. LSTM networks have been deployed to get 

temporal dependencies in video sequences, allowing for 

improved detection of anomalous events over time [1]. 

Knowledge Distillation, a technique where a smaller 

"student" model learns from a larger "teacher" model, 

has been demonstrated useful in lowering computational 

costs without compromising accuracy [3, 17]. 

Many of these models have shown significant results, 

but they often agonize from high computational costs, 

particularly in terms of memory usage and inference 

time [8, 18]. A recent study has focused on integrating 

these models in pioneering ways to secure a balance 

between performance and efficiency. Ensemble methods 

and multi-task learning have been used to elevate model 

robustness, bearing their high resource demands are a 

trade-off [15, 19]. Therefore, there has been rising 

attention in lightweight architectures like MobileNetV2 

combined with other models to reach real-time 

performance on edge devices [5, 12]. 

MODELS USED 

This study observes the following models and model 

combinations: 

1. CNN (ResNet-50) + LSTM: This combination 

influences Convolutional Neural Networks (CNNs), like 

ResNet-50, for pulling out spatial features from frames 

and Long Short-Term Memory (LSTM) networks for 

seizing temporal dependencies across video sequences 

[4,14, 27, 28]. 

It is used for video anomaly detection because of the 

LSTM's capability to process sequential data. ResNet-50 

assists robust feature extraction through its deep 

architecture and residual connections. 

The limiting factor is that it is computationally 

exhaustive since LSTMs increase model complexity. 

The slower inference times restrict its real-time 

application. 

It is best for Anomaly detection where temporal patterns 

are of prime concern, such as recognizing unusual 

pedestrian movements. 

2. Transformer + MobileNetV2: It integrates 

MobileNetV2, a lightweight CNN, for spatial feature 

extraction, with Transformers for modeling long-range 

dependencies and sequential relationships [5, 24]. 

MobileNetV2 is optimized for efficiency, lowering 

computational load, and Transformers successes in 

capturing global context, increasing accuracy in complex 

datasets. Despite being efficient, Transformer 

computations can still be resource-expensive for long 

sequences. Real-time applications demand a balance 

between performance and computational efficiency. 

3. Knowledge Distillation (VGG16 + MobileNet): 

Using a greater teacher model (VGG16) for mentoring a 

smaller student model (MobileNet), lowering the 

computational load [3, 17]. Knowledge Distillation 

encompasses training a smaller "student" model 

(MobileNet) by means of knowledge transferred from a 

larger "teacher" model (VGG16). 

It lowers model size and computational necessities while 

maintaining accuracy and creating complex models that 

are useful for deployment on edge devices. Training the 

student model demands substantial computational 

resources upfront. It is best for situations with resource 

constraints, like edge devices or mobile applications. 

4. Ensemble (ResNet + XGBoost): This technique 

integrates deep learning and machine learning 

techniques for better accuracy [15, 23]. It adds up 

ResNet's feature extraction abilities with the predictive 

power of XGBoost, a gradient-boosting machine 

learning model. 

It uplifts robustness and accuracy by influencing various 

model strengths and is effective at dealing with 

imbalanced datasets and diversified anomaly types. The 

challenges are higher memory usage and longer 

inference times because of multiple models being run in 

parallel or sequence.  

5. Multi-Task Learning (ResNet + LSTM + CNN): In 

this technique, integrating multiple models to handle 

different tasks in parallel is focused upon [14,19]. It 
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combines various models (e.g., ResNet for spatial 

features, LSTM for temporal dependencies, and 

additional CNNs for specialized tasks) to improve 

multiple anomaly detection assignments. It upgrades 

accuracy across tasks by sharing representations and 

learning jointly. It is effective with complex, multi-

dimensional data. Enhanced model complexity gives 

higher computational costs and training times. It is 

suitable for complex applications where multiple tasks 

need to be handled jointly, such as localization and 

anomaly detection simultaneously. 

6. Cascade Model (MobileNet + ResNet + RNN): A 

cascading architecture integrating lightweight and heavy 

models to uplift efficiency [5, 13]. Cascading 

architecture lightweight models (e.g., MobileNet) 

operate on initial predictions. Heavier models (e.g., 

ResNet, RNN) improve results in subsequent stages. It 

lowers overall computational cost by utilising heavier 

models only when required. It also allows a trade-off 

between speed and accuracy during deployment. It is 

slower for edge cases where multiple stages of the 

cascade are triggered. It is best suited for hierarchical 

anomaly detection tasks where early-stage models can 

filter obvious anomalies. 

7. Attention-based Fusion (VGG16 + Attention + 

CNN): Incorporating attention mechanisms to focus on 

the most important parts of the input data [11,13]. It 

incorporates attention mechanisms into traditional 

architectures like VGG16 and CNNs to focus on the 

most important regions of the input data. It enhances 

model accuracy by directing focus to relevant parts of 

the data, such as moving objects or anomalies in 

crowded scenes. It is specially useful for large datasets 

with diverse anomaly patterns. Increased memory usage 

and inference time due to the added attention layers are 

some of the limiting factors. It can be utilized for large-

scale surveillance systems where high accuracy is 

essential. 

8. Hybrid Architecture (SVM + ResNet + 

Transformer): Here, an integration of Support Vector 

Machines for classification and deep learning models for 

feature extraction is adopted [23,24]. It integrates 

Support Vector Machines (SVMs) for efficient 

classification with ResNet and Transformer models for 

vigorous feature extraction. It achieves a balance 

between traditional machine learning (SVM) and deep 

learning (ResNet, Transformer) strengths. It is supple 

and adaptable for diverse datasets. It is computationally 

intensive because of the combination of multiple 

complex models. It is suitable for applications 

demanding a mix of traditional and advanced learning 

techniques for diverse anomaly types [25, 29, 30]. 

Fig. 1 Shows features of combined models

 

Fig. 1 Model Combinations for Anomaly Detection 
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EVALUATION PARAMETERS 

The following evaluation parameters are used in this 

study. 

Precision: Precision measures the ratio of true positive 

detections out of all positive detections (true positives 

and false positives). It indicates the accuracy of positive 

predictions. 

 Precision =  
TP

TP + FP
                                                   (1) 

 

The Higher value of precision indicates that when the 

model predicts an anomaly, it is likely to be correct. This 

is important in minimizing false alarms, making the 

system more reliable for practical use. 

 

Recall (Sensitivity): 

Recall (or Sensitivity) measures the ratio of true positive 

detections out of all actual positive instances. It indicates 

the model’s capability to extract actual anomalies. 

 

 Recall =  
TP

TP + FN
                                                          (2)    

 

The Higher value of recall makes sure that most actual 

anomalies are detected. It is suitable for applications 

where missing an anomaly can have serious 

consequences, such as security breaches. 

 

 F1 Score 

The F1 score is the harmonic mean of precision and 

recall. It balances the trade-off between the two metrics. 

 

 F1 Score =  
2∗Precision∗Recall

Precision + Recall
                                     (3) 

 

The F1 score is especially useful in imbalanced datasets 

as it gives a single metric that considers both false 

positives and false negatives, offering a more elaborate 

view of model performance. 

 

COMPUTATIONAL EFFICIENCY METRICS 

Inference Time: This is the amount of time the model 

consumes to process a single input (e.g., a video frame 

or a video sequence) and give predictions. 

Low inference time is necessary for real-time 

applications, where prompt anomaly detection can avoid 

potential threats or mishaps. High inference time can be 

a reason for delays, making the model not applicable for 

live surveillance. 

Memory Usage: Memory usage refers to the amount of 

memory (measured in megabytes or gigabytes) 

consumed by the model during inference. 

 Lower is the memory usage better it is suited for 

deployment on edge devices with restricted hardware 

resources (e.g., cameras or drones). High memory usage 

may demand powerful servers with higher deployment 

costs. 

FLOPs (Floating-Point Operations): FLOPs calculate 

the number of floating-point operations necessary for the 

model to process one forward pass of the input. It is a 

proxy for computational complexity. 

A lower FLOP count suggests a more efficient model, 

which is crucial for resource-constrained environments. 

Models with high FLOPs may give higher accuracy but 

at the cost of higher power consumption and processing 

time. 

DATASET USED 

UCSD Anomaly Detection Dataset: The UCSD 

Anomaly Detection Dataset [26]is a commonly used 

benchmark for estimating anomaly detection models, 

especially in video surveillance applications. It was 

gathered using a stationary camera overlooking 

pedestrian walkways on a university campus. The 

dataset is divided into two subsets: 

Peds1: This subset has video clips where groups of 

people walk towards and away from the camera, with 

some perspective distortion. It contains 34 training video 

samples and 36 testing video samples. 

Peds2: This subset includes scenes with pedestrian 

movement parallel to the camera plane. It contains 16 

training video samples and 12 testing video samples. 

The dataset captures various types of anomalies, such as 

Non-pedestrian entities like bikers, skaters, and small 

carts.  

Ground truth annotations suggest whether an anomaly is 

present for each frame. Additionally, pixel-level binary 

masks are available for a subset of the clips, supporting 

the algorithms to be able to evaluate the ability to 

localize anomalies. 

RESULTS AND DISCUSSION 
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The results are shown in Table 1 and Figure 2. The 

observations offer insights into the trade-offs between 

model performance and computational efficiency. 

Table 1 Comparisons of Combined models 

Model Combination Precision Recall 
F1-

Score 

Inference Time 

(seconds per 

frame) 

Memory 

Usage 

(MB) 

FLOPs 

(Billion) 

CNN (ResNet-50) + LSTM 0.89 0.86 0.87 0.050 400 17.5 

Transformer + MobileNetV2 0.85 0.83 0.84 0.030 250 12.3 

Knowledge Distillation (VGG16 + MobileNet) 0.87 0.85 0.86 0.020 180 7.8 

Ensemble (ResNet + XGBoost) 0.91 0.88 0.89 0.075 700 20.3 

Multi-Task Learning (ResNet + LSTM + CNN) 0.90 0.87 0.88 0.040 520 24.2 

Cascade Model (MobileNet + ResNet + RNN) 0.88 0.84 0.86 0.025 460 15.6 

Attention-based Fusion (VGG16 + Attention + CNN) 0.85 0.83 0.84 0.035 550 16.5 

Hybrid Architecture (SVM + ResNet + Transformer) 0.92 0.90 0.91 0.060 650 22.5 

 

 

Fig. 2 Chart: Precision, Recall and F-1 Score for Combined Models 

Ensemble Models (ResNet + XGBoost) and Hybrid 

Architectures: These models achieve remarkable 

accuracy due to their capability to add up the merits of 

multiple architectures. Ensemble methods increase 

robustness by accumulating predictions from various 

models, while hybrid approaches combine features from 

different paradigms (e.g., deep learning and traditional 

machine learning). 

The computational demands, such as higher memory 

usage and longer inference times, suggest that it is not 

appropriate for real-time applications. Their reliance on 

substantial computational resources restricts their utility 

to situations like offline video analysis or post-event 

anomaly detection. 

Lightweight Models (Transformer + MobileNetV2, 

Knowledge Distillation): These models demonstrate a 

well-rounded balance of performance and computational 

efficiency, addressing the needs of real-time 

applications. MobileNetV2, identified for its compact 

architecture, lowers computational requirements, 

whereas Transformers adds sequential learning abilities. 

Knowledge Distillation restructures these models by 

transferring knowledge from larger, more complex 

"teacher" models to lightweight "student" models, 
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achieving competitive accuracy with lower model size 

and resource usage. 

Multi-Task Learning and Cascade Models: Multi-

Task Learning combines multiple objectives into an 

incorporated framework, enhancing accuracy across 

various tasks. Similarly, Cascade Models influence a 

series of lightweight and heavy models to improve 

predictions incrementally. While these strategies elevate 

flexibility, they add up computational overhead because 

of their complex workflows, making them unsuitable for 

real-time environments. 

Attention-Based Fusion Models: By including 

attention mechanisms, these models focus on the most 

crucial aspects of the input data, enhancing accuracy 

greatly, diversifying datasets. But the added complexity 

of attention layers inevitably raises both memory 

consumption and inference time, demanding careful 

consideration of the deployment environment. 

This study highlights that the choice of a model should 

align with the specific demand of the application. Offline 

anomaly detection tasks can leverage high-accuracy but 

computationally intensive models, while lightweight 

architectures excel in real-time scenarios with restricted 

resources. 

FUTURE SCOPE 

In future scope, various aspects can be included and 

examined in future.  

1 Exploring More Advanced Model Architectures: 

The development of advanced architectures can give rise 

to transformation in achieving the balance between 

accuracy and computational demands. Future research 

could focus on: 

Lightweight Hybrid Models: Adding up different 

model paradigms, such as CNNs, Transformers, and 

Autoencoders, can influence their unique strengths. 

Transformer-CNN hybrids could extract both global 

dependencies and local features in video data efficiently. 

Graph Neural Networks (GNNs): These models are 

proficient at capturing relationships between entities, 

which may be valuable in detecting contextual or 

relational anomalies in structured data. 

2. Investigating Edge Computing Solutions: Edge 

computing embraces greater promise for deploying 

anomaly detection models on resource-constrained 

devices. Future research could focus on: 

Model Optimization: Methods like quantization, 

pruning, and distillation could be further explored to 

restrict model size and lower latency with enhanced 

performance. 

Dynamic Model Adaptation: Developing models that 

could dynamically adjust their complexity based on 

available resources (e.g., battery life, CPU load) can 

achieve consistent performance across various devices. 

3. Enhancing the Robustness of Models 

Future anomaly detection models must possess the 

ability to identify diverse and complex anomalies. 

Research could prioritize: 

Handling Rare Events: Methods like synthetic data 

generation or oversampling underrepresented classes in 

training datasets could enhance model sensitivity to rare 

anomalies. 

Streamlining future research could revolutionize 

anomaly detection, reaching the boundaries of what is 

possible while addressing practical challenges like 

efficiency, deployment, and reliability. 

CONCLUSION 

This study determines the trade-offs between 

performance and computational efficiency in deep 

learning models for anomaly detection. Models like 

MobileNetV2 combined with Transformer or 

Knowledge Distillation achieve the best balance between 

accuracy and efficiency, making them appropriate for 

real-time anomaly detection in surveillance and 

monitoring systems. Additionally, ensemble models and 

hybrid architectures are more effective for situations 

where accuracy is paramount and computational 

resources are not restricted. 
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