
NCRISET-2017 e-ISSN: 2456-3463

International Journal of Innovations in Engineering and Science, Vol. 2, No.6, 2017

www.ijies.net

118

Systolic Arrays for Reconfigurable DSP Systems

Rajashree Talatule

Department of Electronics and Telecommunication

 G.H .Raisoni Institute of Engineering & Technology

Nagpur, India

Contact no.-7709731725

E-mail: rajashreetalatule20@gmail.com

Prof.K.S.Mankar

Department of Electronics and Telecommunication

 G.H .Raisoni Institute of Engineering & Technology

Nagpur, India

contact no-7588749114

E-mail:Kanchan.mankar@raisoni.net

Abstract—Systolic arrays provide an alternative view of

reconfigurable computing systems where real-time

reconfiguration may be achieved by changing the sequence of

events among the PEs forming the array. A rich selection of

algorithms can be mapped into a systolic array structure .This

paper is based on matrix multiplication using two methods i.e

conventional and systolic architecture. . The simulation results

have given that, the implementation of Systolic architecture

requires less number of clock cycles then Conventional method.

Keywords-systolic array, multiplier, digital signal

processing, parallel architecture, pipelining, throughput,

latency

I. INTRODUCTION

A reconfigurable computing system is a computing
platform whose architecture can be modified by the software.
In ASIC hardware, the logical functions of gates are fixed and
cannot be modified. In FPGAs however, both the logic
functions performed within the logic blocks and the
connections between the blocks can be altered by sending
signals to the chip. Traditionally FPGAs have been used as
field programmable devices not as run-time reconfigurable
devices. Several seconds or more have been required for a
change in device configuration. New advances in technology
are making it possible for FPGAs to be reconfigured in the
microsecond range, and researchers are aiming at FPGA-based
computing systems that would be able to adapt their hardware
almost continuously in response to changes in the input data or
processing environment.

II. THEORETICAL BACKGROUND

A. Matrix-Matrix Multiplication on Hardware

Computing matrix products is both a central operation in
many numerical algorithms and potentially time consuming,
making it one of the most well-studied problems in numerical
computing. Various algorithms have been devised for
computing C = AB, especially for large matrices. Mapping
such algorithms to custom or general purpose hardware
architecture is always a challenging task. By having a custom

or ASIC hardware, the matrix-matrix multiplication can be
implemented using least resources and can be accelerated to a
large extent. Mapping the same algorithms on general purpose
hardware, for example, implementing on general purpose
Xilinx FPGA board always has inherent trade-offs such as area
(power), time (maximum operating clock frequency), latency,
hardware utilization efficiency and so on. The realistic way to
compare two solutions would be to assign weights to each of
these factors and choose a solution among multiple possible
pareto optimal solutions.

B. Systolic Array Architecture

Systolic architectures (also referred to as systolic arrays)
represent a network of processing elements (PEs) that
rhythmically compute and pass data through the system. These
PEs regularly pump data in and out such that a regular flow of
data is maintained [1], [2]. As a result, systolic systems feature
two important properties for VLSI design: • Modularity:
Various functional blocks which make up the larger system
have well-defined functions and interfaces. Hence, the concept
of modularity enables the parallelisation of the design process.
• Regularity: Hierarchical decomposition of a large system
results in not only simple, but also sim- ilar blocks, as much as
possible. The systolic array may be used as a coprocessor in
combination with a host computer where the data samples
received from the host computer pass through the PEs and the
final result is returned to the host computer (see Fig. 1). This
operation is analogous to the flow of blood through the heart,
thus the name “systolic”. Typically, all the PEs in a systolic
array are uniform and fully pipelined, i.e., all communicating
edges among the PEs contain delay elements, and the whole
system usually contains only local interconnections [3].
However, some relaxations have been introduced to increase
the utility of systolic arrays. These relaxations include use of
not only local but also neighbor (near, but not nearest)
interconnections, use of data broadcast operations, and use of
different PEs in the system, especially at the boundaries. With
these relaxations, a family of modular, regular, and efficient
data-driven array architectures can be designed for DSP
applications, one of which is matrix-matrix multiplication.

NCRISET-2017 e-ISSN: 2456-3463

International Journal of Innovations in Engineering and Science, Vol. 2, No.6, 2017

www.ijies.net

119

Figure 1. Systolic array concept

Figure 2. Two dimensional systolic array for matrix multiplication

Architecture Types

The computing elements in a systolic array have a number
of serial and/or parallel I/O ports. For processors with 32-bit
word lengths parallel I/O ports are impractical therefore serial
I/O ports are used. For example, Intel’s 8051 microcontroller
has four 4-bit parallel I/O ports for a total of thirty two pins
dedicated to data I/O. Whereas Texas Instruments’ C6x and
C54x families have one full-duplex serial I/O port called
McBSP (Multichannel Buffered Serial Port) with a 128 TDM-
channel capacity. The I/O ports can be used for communication
with external devices such as A/D and D/A converters and
interprocessor communication in multiprocessor systems.

In serial I/O ports data is input to the receive shift register
one bit at a time, until an entire word is loaded. The word is
then shifted in parallel and loaded into the main processor,
which uses one instruction to move the data from the receive
buffer into main memory. The receive buffer allows the
processor to move the data asynchronously upon reception of
the word through the serial port. A reverse sequence of
operations is used to output parallel data words through the
serial port. Multiple serial ports allow us to connect multiple
PEs in an array. As we saw in the example above, the number
of serial ports available within each PE varies and it is typically
between one and six.

Figure 3 shows a block diagram for a serial interface. The
transmit and receive data buffers are connected to the internal
parallel data bus. The transmit and receive shift registers
prepare the data for output and synchronization is achieved by
means of interface control signals given to the serial control
unit. The three different architectures are bus/pipeline, parallel

and massively par- allel. Figure 4 shows the block diagram for
the bus/pipeline architecture. Note that only two serial ports are
needed and one is configured as a receive port while the other
is configured as a transmit port. Figure 5 shows the port
connections for the parallel array.

Figure 3. Serial interface structure

Figure 4. Bus pipelined architecture

Figure 5. Parallel pipelined architecture

III. PROPOSED ARCHITECTURE

The Parallel Matrix Multiplication [7] has many different
identifications, but all with the similar implementation. That is,
they immediately multiplex a pair of matrix elements in
special. Parallel Matrix Multiplication on Systolic Array
(PMMSA) uses this approach. In [5], PMMSA is characterized
by processing data input in pipeline and comprised of
regularly arrayed PE. Where neighbor PEs are connected with
each other by shortest line and therefore mass data has no need
to be stored before processing. Decrease of distance between
the PEs in an array greatly reduces the internal communication
delay and improves the utility of processing units. It also
removes time consumption for controlling the establishment

NCRISET-2017 e-ISSN: 2456-3463

International Journal of Innovations in Engineering and Science, Vol. 2, No.6, 2017

www.ijies.net

120

of data stream. In, this research, the PE is replaced with
Multiplication and Accumulation (MAC) to enhance the
speed and reduce the complexity of Systolic Architecture.

Figures 6 show matrix multiplication being performed on a
systolic architecture. Figure 7 shows the final result of the
multiplication. Figure 8 shows an alternative data injection
mechanism. The computations involved in obtaining a single
element of the output matrix are shown in figure 9.

Figure 6. Systolic Matrix Multiplication

Figure 7. Fully populated configuration

Figure 8. Data injection

Figure 9. Computation of single element

The algorithm for the matrix multiplication of order N×N is
shown bellow.

3
4. C[I,J] = C[I,J] + A[J,K] * B[K,J]

implemented by using systolic array
5. End
6. End
7. End

The above algorithm can be implemented in two methods
(1) Conventional method (without Pipeline and Parallel
Processing) (2) Systolic Architecture (Pipeline and Parallel
Processing).

IV. IMPLEMENTATION SCHEME

In this paper, we aim to compute the equation (1) with a
two dimensional systolic array:

C(m,n) = A(m,k) x B(k,n)

Where A, B and C are the matrices with order (m,k) and
(k,n) respectively. Each PE of systolic array computes the
multiplication of elements and accumulates to the
corresponding element and then elements will be passed to
neighbor PE in the systolic array. First elements in row i of
matrix A are injected first into PE as pipeline with the
sequence of and the input time to the element of is one time
unit later than . Similarly, elements in column j of matrix B
are injected first into PE as pipeline with the sequence of and

NCRISET-2017 e-ISSN: 2456-3463

International Journal of Innovations in Engineering and Science, Vol. 2, No.6, 2017

www.ijies.net

121

the input time to the element of the sequence of is one time
unit later than . The architecture of PE in this approach is
shown in figure 10 which performs the Multiplication and
Accumulation on data.

A. Systolic Array Architecture for Matrix Multiplication

A systolic architecture is an arrangement of processors i.e.
PEs in an array (AB2 Architecture in [3]) where data flows
synchronously across the array between neighbors, usually
with different data flowing in different directions. PE at each
step takes input data from one or more neighbors (e.g. Left
and Top), processes it and, in the next step, outputs results in
the opposite direction (Right and Bottom). The Proposed two
dimensional systolic Architecture is given in the Figure 11.

Figure 10. Schematic of processing element

The array architecture given above takes input data in
parallel into first PEs in the array and processes the
Multiplication and Accumulation on them and then outputs
result to the next level PEs of array. Systolic arrays do not lost
their speed due to their connection like any other parallelism.
Where, each cell (PE) is an independent Processor (CPU) and
has its own registers and Arithmetic and Logic Units (ALUs)
i.e. Multiplication and Accumulation unit. The cells share the
information with their neighbors, after performing the
necessary operations on the data.

Figure 11. Systolic array for matrix multiplication

Systolic Array Architecture (SAA) for Matrix
Multiplication is shown in the Figure 11. Where each cell takes

inputs from left and top, multiplies them and accumulates in
the local register which is inside the each PE. After N clock
pulses the result would be stored in each PE. The proposed
systolic array architecture needs N2 magnitude Multipliers,
2N magnitude Accumulators and 4N registers are needed to
compute matrix multiplication where N is order of matrix.

V. RESULTS & DISCUSSION

The implementation of Matrix Multiplication is done in
both methods i.e. Conventional and Systolic Architecture, as
described above, on FPGA. The RTL code is written in
Verilog HDL, verification of logic and simulation is done by
ModelSim XE 6.4b. The simulation results have given that,
the Systolic architecture implementation requires less number
of clock cycles then Conventional method and is shown in
Figure 12.

Figure 12. Simulation results

The simulation results in Figure 12, exposes the parallel
processing and pipelining by the systolic array architecture and
also the input and output matrices , and respectively where
the matrix elements are of 4 bit each. After simulation, the
design is passed for synthesis onto the platform XILINX ISE
9.2i to convert RTL logic into gate level netlist and also the
schematic diagram is captured. The schematic diagrams are
shown in Figure 13 and Figure 14. The Figure 13 represents the
top level hierarchy of design and the Figure 14 shows internal
hierarchy of top level schematic.

Figure 13. Top level schematic

NCRISET-2017 e-ISSN: 2456-3463

International Journal of Innovations in Engineering and Science, Vol. 2, No.6, 2017

www.ijies.net

122

Figure 14. Internal hierarchy of top level design

The both designs Conventional method and Systolic
Architecture for Matrix Multiplication are targeted to the
device xc3s500e-5-ft256 and the synthesis report of the
designs provides the gate level netlist with critical path delay
between input and output. The critical path delay represents
the core speed of the design. The brief summary of synthesis
report is exposed in Table 1. From the Table 1, it is noticed that
the core speed of Systolic Array Architecture for matrix
multiplication is 210.2MHz which is more than two times of
conventional method 101.7MHz.

VI. CONCLUSION

The Systolic Array Architecture is designed for Matrix
Multiplication and it is targeted to the Field Programmable
Gate Array device xc3s500e-5-ft256. The parallel processing
and pipelining is introduced into the proposed systolic
architecture to enhance the speed and reduce the complexity
of the Matrix Multiplier. The proposed design is simulated,
synthesized, implemented on FPGA device xc3s500e-5-
ft256 and it has given the core speed 210.2MHz.

REFERENCES

[1] H. T. Kung “Why systolic architectures?,” IEEE Computer, vol. 15, pp.

37, Jan. 1982.

[2] Sung Burn Pan, Seung Soo Chae and Rae-Hong Park, VLSI
Architecture for Block Matching Algorithms using Systolic Array,
IEEE Transactions on Circuits and Systems for Video Technology, Vol.
6, No. 1, February 1996.

[3] Kuan-i Lee, Algorith and VLSI architecture design for H.264/AVC
Inter Frame Coding, A PhD Thesis at National Cheng Kung University,
Tainan, Taiwan, in 2007.

[4] Doru Florin Chiper, M. N. S. Swamy, M. Ohmair Ahmad, and Thanos
Stouraitis, A Systolic Array Architecture for the Discrete Cosine
Transform, IEEE Transactions on Signal Processig, Vol. 50, no. 9,
September, 2002.

[5] Ganapathi Hegde, Cyril Prasanna Raj P and P.R.Vaya, Implementation
of Systolic Array Architecture for Full Search Block Matching
Algorithm on FPGA, European Journal of Scientific Research, Vol.33
No.4 (2009), pp.606- 616.

[6] Chien-Min Ou, Chian-Feng Le and Wen-Jyi Hwang, An Efficient VLSI
Architecture for H.264 Variable Block Size Motion Estimation, IEEE
Transactions on Consumer Electronics, Vol. 51, No. 4, NOVEMBER
2005.

[7] Feifei Dong, Sihan Zhang and Cheng Chen, Improved Design and
Analyse of Parallel Matrix Multiplication on Systolic Array Matrix,
IEEE, 2009.

[8] Ziad Al-Qadi and and Musbah Aqel, erformance Analysis of Parallel
Matrix Multiplication Algorithms Used in Image Processing, World
Applied Sciences Journal 6 (1): 45-52, 2009.

[9] Mohammad Mahdi Azadfar, Implementation of A Optimized Systolic
Array Architecture for FSBMA using FPGA for Real-time
Applications, IJCSNS International Journal of Computer Science and
Network Security, VOL.8 No.3, March 2008.

