
https://doi.org/10.46335/IJIES.2022.7.8.8 e-ISSN: 2456-3463

Vol. 7, No. 8, 2022, PP. 42-47

International Journal of Innovations in Engineering and Science, www.ijies.net

42

Effective Triggering Mechanism for Server less

Environment

Shashank Srivastava
1
, Dr. Bineet Kumar Gupta

2

1
Research Scholar,ShriRamswaroop Memorial University, Lucknow, Uttar Pradesh,India,225003

2
Associate Professor, Shri Ramswaroop Memorial University, Lucknow, Uttar Pradesh, India,225003

shivam.shashank@gmail.com

Received on: 11 June ,2022 Revised on: 29 July ,2022, Published on: 01 August,2022

Abstract – Cloud technologies are dominating the globe

in today's worldwide environment by enabling end users

by delivering faultless infrastructure. Every community

will benefit from platforms and services. The Server less

approach, also known as Function as a Service[FaaS], is

now the most popular cloud technology paradigm,.

Because of this, the server less approach is in high

demand among numerous companies and individual

stakeholders. No organization or individual is responsible

for supplying and monitoring needed resources. It also

works with a variety of programming languages. That is

why the server less paradigm is so popular. However, the

server less computing model is not entirely new. There

are several options available nowadays.AWS Lambda,

Microsoft Azure, Google Cloud Functions, and IBM Open

Whisk are examples of server less service providers These

server less solutions make it possible to individuals to

execute their programmers in environments supplied. The

state of code execution changes as individuals trigger the

code to execute in a server less environment. Because the

code operates in an isolated environment of the server

less platforms, which is the biggest challenge of these

platforms, it is unknown to the individual.

In server less environment triggering of server less

function is an important & crucial aspect because all the

server less activities in server less environment depend on

it. As in current server less environments there are many

challenges which are directly or indirectly affect the

behavior of server less function which may cause the

major deviations in results and processing of

developer’s code in the serverless environment.

Therefore, in this paper we are proposing the possible

challenges in serverless environment with their proposed

solutions to overcome with those challenges.

.
Keywords- Serverless Computing, Serverless

Functions, Cloud Computing, Lambda, Azure, Open

Whisk, Cloud Computing, Serverless Computing

I – INTRODUCTION

Generally, programmers spend endless hours using

code to solve business challenges. These many hours are

mostly spent on two tasks: Firstly, finding out how to get

the code that developers create running on whatever

machines are available; secondly ensuring that those

computers work smoothly. This is a task that will never

cease.

To get rid of these lengthy procedures, a word called

"Serverless"[1,2] was coined in early 2012, with the idea

of delegating these tasks to serverless model providers,

and so the serverless computing model was born.

In "server awake" technology, developers must think

about everything from operating systems to code

deployment and execution on their own, whereas in

serverless computing, developers must simply put or

upload their code to the interface of the serverless

https://doi.org/10.46335/IJIES.2022.7.8.8 e-ISSN: 2456-3463

Vol. 7, No. 8, 2022, PP. 42-47

International Journal of Innovations in Engineering and Science, www.ijies.net

43

computing vendor's application, and these vendors are

responsible for running or executing the code, not the

developers.

Users of server less computing must only "pay per

usage," rather than saving their code on server less

platforms. The fees are only applied when the user's code

is run each time. This saves consumers a lot of money

and encourages them to utilize server less platforms to

execute their applications because in server awake

modeling, users must pay per second or pay per minute.

II –MAJOR CHALLENGES IN SERVERLESS

ENVIRONMENT

The main challenges and Problems in triggering

theserverless functions as Follows:

State of flux: In serverless systems[14], any container

can exist in two states. The container will be in one of

two states: idle or active. The idle state of a container

shows that it is not currently performing anything,

whereas the active state indicates that it is actively

executing server less operations.

The first obstacle appears after a few minutes of

inactivity; at this point, all global variable information is

misidentified or lost. This problem arises when serverless

services are run in a container that may keep a short-term

state during execution and then abruptly shut down when

the container reaches the idle state. Because developers

are unaware of when a container shuts down by reaching

its idle state, this information is not available to them.

Indirect Execution. Implicit parallel execution is another

problem in activating serverless functions. When a single

serverless function gets several events in a short period of

time, this problem develops. In this circumstance, the

functions are overloaded, thus the server starts a new

instance to process the requests in order. Each request in

line is performed by the server in a new allocated

instance, and this execution takes place in an isolated

environment that is likewise unknown to the developers.

As a result, it's possible that these inline functions are

dependent on one other's outputs, making measuring the

total right output a difficult task due to request concurrent

execution.

One-Time Execution.

When a failure in the serverless service provider's

infrastructure happens, this problem develops. Because

all functions can run parallel, as we discussed in our

challenge of Parallel execution, and there are no log

records, it's possible that one function needs to be

executed multiple times to complete any single task, and

each function is executed at least once in this execution

lifecycle, it's possible that if one function becomes faulty

during its execution, it could affect other functions as

well.

Our research work will focus on to develop the better

mechanism to address above mentioned challenges in a

more effective way with the better security model.

III- FEATURES OF SERVERLESS COMPUTING

MODEL

Serverless [10,15] computing models offer a variety of

distinct advantages for developers, making them suited

for many types of developer communities. In this part,

we'll look at several key characteristics of serverless

computing to assist developers in selecting serverless

platforms.

 Financial

 This characteristic distinguishes the serverless

paradigm from all other server-aware systems.

Developers must pay per usage only in the

serverless paradigm, not for keeping their code on

the server; scripts must either execute or not. Users

that utilise serverless must only pay while their code

is running, which is highly inexpensive and

efficient.

 High Availability

 The scalability of resources is controlled

automatically by the vendor, not by the developers,

in serverless models. Serverless suppliers will

control the selection of servers, RAM capacity, CPU

utilization, and operating system based on the

necessity to run developer code. In any case, this

makes it extremely accessible.

 Broad Spectrum of Programming Languages

 Serverless models are compatible with a broad

range of programming languages, from Java Script

to Google's Go. NODE.js, Java, JavaScript #, Ruby,

Python, and Go are also supported. Some serverless

systems allow for code developed in any

programming language to be extended using well-

defined APIs bundled in a Docker image.

 Model of programming

 Currently, serverless systems run a single main

function that accepts a dictionary JSON object as

input and outputs another dictionary.

 Integration

https://doi.org/10.46335/IJIES.2022.7.8.8 e-ISSN: 2456-3463

Vol. 7, No. 8, 2022, PP. 42-47

International Journal of Innovations in Engineering and Science, www.ijies.net

44

 Various models allow for the invocation of one

serverless function into another, as well as the

integration of these functions to handle complicated

development.

 Implementation

 Any serverless service provider's goal is to make

deployment as simple as possible. Normally, only

developers require function source code in a file.

Aside from that, code can be packaged as an archive

with numerous files within or as a binary coded

Docker image, among other choices.

 Accounting

 Serverless systems are multi-user and run in a

separate environment. The associated detail of

performed functions is presented to the user; this

detail includes how many times the user's functions

have been executed and how much they must pay for

it.

 Troubleshooting

 Basic debugging is supported on all platforms via

print statements that are captured in the execution

logs. Additional features might be added to aid

developers in locating bottlenecks, tracing problems,

and so on.

IV-MONETIZED CLOUD PLATFORMS

Commercialized Cloud Platforms are those that may be

utilized by any company or organization in exchange for

a fee based on how much they use cloud platforms. There

are a variety of commercialized cloud platforms

available, some of which are listed below.

 AWS Lambda

 Amazon's AWS Lambda [15] was the first serverless

platform. It has a number of useful features for

resource deployment, price, security, and monitoring.

It supports Node.js, Java, Python, and C# as

mainframe languages. AWS Lambda [15] started out

with modest capabilities, but it has now grown to

become the most popular serverless service provider

on the planet. It has the entire potential of lambda

functions, making it more powerful. The code in

AWS Lambda is performed in reaction to events in

AWS services such as adding and deleting files in an

S3 bucket, making an HTTP call to the Amazon API

gateway, and so on. Amazon Lambda, on the other

hand, can only be used to perform background

operations.

 Google Cloud Function

 Google Cloud Functions [6,15] is a serverless

execution environment that allows you to construct

and link cloud services. We may develop simple,

single-purpose functions that are linked to events

broadcast by your cloud infrastructure and services

using Cloud Functions. Google Cloud Functions

provides rudimentary FaaS [4] capabilities to run

serverless functions written in Node.js in response

to HTTP calls or events from various Google Cloud

services. It is currently available as an Alpha

version. The present functionality is limited, but it is

intended to expand in future editions.

 Microsoft Azure

 Microsoft Azure Functions [7,15] enables HTTP

web hooks and Azure service connectivity to run

user-provided code or functions. C#, F#, Node.js,

Python, PHP, shell, and any other executable are

supported. The runtime code is open-source and

licenced under the MIT License on GitHub. The

Azure Functions CLI provides a local development

environment for creating, developing, testing,

running, and debugging Azure Functions.

 IBM Open Whisk

 IBM Open Whisk [8,9,15] enables event-driven

serverless programming and the creation of

integrated functions by connecting serverless

services. Node.js, Java, Swift, Python, and arbitrary

binaries placed in a Docker container are all

supported. Open Whisk is licensed under the

Apache open-sourcelicense and is accessible on

GitHub.

Fig.1-Different Cloud Environments Acceptability

V- DEMAND OF CLOUD ENVIRONMENTS

In general, there are three sorts of cloud environments

that control practically all forms of web services.

Personal Cloud

The private cloud [12] encompasses all web-related

services purchased by a single developer or company. It

https://doi.org/10.46335/IJIES.2022.7.8.8 e-ISSN: 2456-3463

Vol. 7, No. 8, 2022, PP. 42-47

International Journal of Innovations in Engineering and Science, www.ijies.net

45

might be housed on the organization's facilities or

provided by a third-party provider. In a private cloud

[12], the organization or owner owns all of the hardware

and software. In this approach, managing and monitoring

available resources in a private cloud[12] environment is

always simple.

Public Cloud

All web-related resources are maintained by third-party

suppliers in a public cloud [11] or serverless environment.

Individuals can use the internet to access web services.

Any other individual or business can rent services in the

public cloud [11], and each individual must only pay for

the services that they have used at any given moment.

Hybrid Cloud

A hybrid cloud system [14] serves as a link between

public and private clouds [12]. It encompasses both

public and private cloud [12] services. Businesses may

seamlessly scale up their on-premises infrastructure to the

public cloud[11] to manage any overflow without

allowing third-party databases access to all of their data

using hybrid cloud[14]computing.

Fig.2 – Public, Private & Hybrid Cloud

VI-RELATED APPROCHES

Large number of authors proposed different methods for

solving the problem of triggering serverless function in

Serverless environment.

Computing without servers[3] provide a novel basic for

serverless function sequencing and introduce the

challenge of serverless function composition. Following

that, Rabbit 2017 developed serverless state machines

(Conductor) and a dsl (Composer) to make state machines

easier to create. Trapeze [16] introduces dynamic ifc for

serverless computing and sandboxes serverless functions

to help them communicate with shared storage. Their

formalization of Coq Article 149 in Proc. ACM Program.

Lang., Vol. 3, No. OOPSLA. Date of publication:

October 2019.

Several initiatives [4] use serverless computing to achieve

elastic parallelization. Computing to achieve elastic

parallelization.

Cloud orchestration frameworks[5] is a language for

managing cloud environments; Engage [Fischer et al.

2012] is a deployment manager that supports inter

machine dependencies;[6] is an embedded dsl for writing

cloud-configurable programs; and CPL [7] is a unified

language for writing distributed cloud programs and

their distribution routines. In contrast, is a serverless

computing semantics

Jangda, Abhinav“et.al;”[14] given the solution by using

key value store for persistence, transactions to address

concurrency and unique identifiers to support safe re-

invocation using naïve bayes theorem.

Our research work will focus on to develop the better

mechanism to address above mentioned challenges in a

more effective way with the better security model.

VII- PROPOSED METHDOLOGY

Our proposed method can be based on checkpoint

methodology, where all states of serverless function can

involve with one checkpoint. With this checkpoint

insertion, in case of ideal stage of serverless container,

the all states of serverless function will not be diluted;

we can roll back to the previous successful state of the

serverless function and resume its execution. This will

save the time and efforts of the developers.

Fig.3- Formation of Serverless Function

In the fig 3, we have shown the internal structure of the

serverless function in serverless container. A serverless

container is basically the environment where any

serverless function performs its execution. The

formation of any serverless function comprises of two

segments i.e Event triggering segment and user defined

functions.

Fig. 4- Implementation of Checkpoint Methodology

https://doi.org/10.46335/IJIES.2022.7.8.8 e-ISSN: 2456-3463

Vol. 7, No. 8, 2022, PP. 42-47

International Journal of Innovations in Engineering and Science, www.ijies.net

46

In fig 4, we have shown the working of our proposed

methodology to provide the better environment to the

user to assess the current execution status of its code

using checkpoint methodology.

In each execution of user’s code, we will create

checkpoints.Everytime when code will complete its

execution on checkpoint, its completion log will be stored

at that Checkpoint (In Fig. 4, C1,C2,C3 are those

Checkpoints), so that if any time serverless function fails

during its complete execution, it would not be required to

that function to start from initial stage, It has to be just

rollback to its previous checkpoint and can resume its

execution form there only.

This will save the time and efforts of user to analysis its

code better.

VIII- SIGNIFICANCE OF RESEARCH

Effective methodology for Triggering of serverless

function is very important in the in serverless

environment as many developers use the serverless

platforms to execute their program function due the

distinct features of the serverless computing. After the

process of proposed methods, we will be able to find the

most appropriate methods so that serverless functions and

serverless environment can work in most effective way.

we can provide the more effective environment where

triggering of serverless functions can be more compatible

with these platforms easily and can address the challenges

related to serverless function execution in serverless

platform because demand and acceptability of Public

Cloud platforms are growing very fast with time. The

notification about each state of the function execution can

also be built by the serverless service providers for the

developers. This can be more beneficial for both the

developers and service providers.

IX- CONCLUSION

The following is the conclusion of our Research paper:

• Provide a better mechanism to address the serverless

container when it reaches the Ideal state and provide

better methods to persist all of its execution states •

Provide a better mechanism to notify developers

about each state of serverless function execution

under serverless container

• Provide a better mechanism to address the serverless

container when it reaches the Ideal state and provide

better methods to persist all of its execution states

• To develop a more effective system for detecting

serverless function occurrences, failures, and retries.

• To provide a more secure serverless environment by

developing better security solutions for serverless

services.

X-FUTURE SCOPE

Methodology that works for Because of the special

properties of serverless computing, many developers

choose serverless platforms to perform their program

functions. Triggering of serverless functions is

particularly crucial in the serverless environment.

Following the implementation of the recommended

techniques, we will be able to identify the most suited

ways for serverless functions and serverless

environments.

We can create an environment where serverless function

triggering is more easily compatible with these

platforms, and we can address the challenges associated

with serverless function execution in a serverless

platform, because the demand for and acceptance of

Public Cloud platforms is rapidly increasing. The

serverless service may also generate notifications for

each state of the function execution.

REFERENCES

[1] Panda, Surya & Mehta, Ashima. (2018). Design of

Infrastructure as a Service (IAAS[1]) Framework with

Report Generation Mechanism.

[2] Cloud Computing Platform as Service‖, InformationWeek

16 Oct. 2, 2009

[3] Ioana Baldini, Perry Cheng, Stephen J. Fink, Nick

Mitchell, Vinod Muthusamy, Rodric Rabbah, Philippe

Suter, and Olivier Tardieu. 2017. The Serverless

Trilemma: Function Composition for Serverless

Computing. In ACM SIGPLAN International Symposium

on New Ideas, New Paradigms, and Reflections on

Programming and Software (Onward!).

[4] KalevAlpernas, Cormac Flanagan, SadjadFouladi,

Leonid Ryzhyk, MoolySagiv, Thomas Schmitz, and Keith

Winstein. 2018. Secure Serverless Computing Using

Dynamic Information Flow Control. Proceedings of the

ACM on Programming Languages 2, OOPSLA (Oct.

2018).

[5] SanjivaWeerawarana, Chathura Ekanayake, Srinath

Perera, and Frank Leymann. 2018. Bringing Middleware

to Everyday Programmers with Ballerina. In Business

Process Management
[6] Pulumi 2018. Pulumi. Cloud Native Infrastructure as

Code. https://www.pulumi.com/. Accessed Oct 12 2019.

[7] Oliver Bračevac, Sebastian Erdweg, Guido Salvaneschi,

and Mira Mezini. 2016. CPL: A Core Language for Cloud

https://doi.org/10.46335/IJIES.2022.7.8.8 e-ISSN: 2456-3463

Vol. 7, No. 8, 2022, PP. 42-47

International Journal of Innovations in Engineering and Science, www.ijies.net

47

Computing. In Proceedings of the 15th International

Conference on Modularity.

[8] Kuntsevich, Aleksandr&Nasirifard, Pezhman& Jacobsen,

Hans-arno. (2018). A Distributed Analysis and

Benchmarking Framework for Apache OpenWhisk

Serverless Platform. 3-4. 10.1145/3284014.3284016.

[9] Sampé, Josep&Vernik, Gil & Sánchez-Artigas, Marc

&López, Pedro. (2018). Serverless Data Analytics in the

IBM Cloud. 1-8. 10.1145/3284028.3284029.

[10] Shafiei, Hossein&Khonsari, Ahmad &Mousavi, P. (2019).

Serverless Computing: A Survey of Opportunities,

Challenges and Applications.

10.13140/RG.2.2.32882.25286.

[11] Heydari, Atefeh&Tavakoli, Mohammadali&Riazi,

Mohammad. (2014). An Overview of Public cloud[11]

Security Issues. International Journal of Management

Excellence. 3. 10.17722/ijme.v3i2.166.

[12] Yunxia, Jiang & Bowen, Zhao &Shuqi, Wang &Dongnan,

Sun. (2014). Research of Enterprise Private cloud[12]

Computing Platform Based on OpenStack. International

Journal of Grid and Distributed Computing. 7. 171-180.

10.14257/ijgdc.2014.7.5.16.

[13] Aryotejo, Guruh&Kristiyanto, Daniel &Mufadhol,

Mufadhol. (2018). Hybrid cloud[14]: bridging of private

and public cloud[11] computing. Journal of Physics:

Conference Series. 1025. 012091. 10.1088/1742-

6596/1025/1/012091.

[14] Jangda, Abhinav& Pinckney, Donald & Baxter, Samuel &

Devore-McDonald, Breanna &Spitze, Joseph &Brun,

Yuriy&Guha, Arjun. (2019). Formal Foundations of

Serverless Computing,ACM Journal

[15] Srivastava, Shashank and Bahadur, Promila, Metaphorical

Analysis of Serverless Computing Platforms and Related

Challenges (May 10, 2021). Proceedings of the

International Conference on Innovative Computing &

Communication (ICICC) 2021,

[16] KalevAlpernas, Cormac Flanagan, SadjadFouladi, Leonid

Ryzhyk, MoolySagiv, Thomas Schmitz, and Keith Winstein.

2018. Secure Serverless Computing Using Dynamic

Information Flow Control. Proceedings of the ACM on

Programming Languages 2, OOPSLA (Oct. 2018)

