
Impact Factor Value 4.046 e-ISSN: 2456-3463
National Conference on Quality Up-gradation in Engineering, Science and Technology (NC-QUEST018)

Organized by College of Engineering and Technology, Dhanamgaon Rly-444709

International Journal of Innovations in Engineering and Science, Vol. 3, No.6, 2018
www.ijies.net

62

Key Exposure for Cloud Computing Stored Data
Ms. Manisha A. Pradhan

1
, Ms. Prajakta U. Bakhade

2

1
 Dr. Amit K. Gaikwad

Dhamangaon Education Society’s

College of Engineering and Technology,

Dhamangaon Rly

Abstract: Recent news reveal a powerful attacker

which breaks data confidentiality by acquiring

cryptographic keys, by means of coercion or backdoors

in cryptographic software. Once the encryption key is

exposed, the only viable measure to preserve data

confidentiality is to limit the attacker’s access to the

ciphertext. This may be achieved, for example, by

spreading ciphertext blocks across servers in multiple

administrative domains thus assuming that the adversary

cannot compromise all of them. Nevertheless, if data is

encrypted with existing schemes, an adversary equipped

with the encryption key, can still compromise a single

server and decrypt the ciphertext blocks stored therein.

In this paper, we study data confidentiality against an

adversary which knows the encryption key and has

access to a large fraction of the ciphertext blocks. To

this end, we propose Bastion, a novel and efficient

scheme that guarantees data confidentiality even if the

encryption key is leaked and the adversary has access to

almost all ciphertext blocks. We analyze the security of

Bastion, and we evaluate its performance by means of a

prototype implementation.

Keywords: Key exposure, data confidentiality,

dispersed storage.

I. INTRODUCTION

The world recently witnessed a massive surveillance

program aimed at breaking users’ privacy. Perpetrators

were not hindered by the various security measures

deployed within the targeted services. For instance,

although these services relied on encryption mechanisms

to guarantee data confidentiality, the necessary keying

material was acquired by means of backdoors, bribe, or

coercion. If the encryption key is exposed, the only

viable means to guarantee confidentiality is to limit the

adversary’s access to the ciphertext, e.g., by spreading it

across multiple administrative domains, in the hope that

the adversary cannot compromise all of them. However,

even if the data is encrypted and dispersed across

different administrative domains, an adversary equipped

with the appropriate keying material can compromise a

server in one domain and decrypt ciphertext blocks

stored therein. In this paper, we study data

confidentiality against an adversary which knows the

encryption key and has access to a large fraction of the

ciphertext blocks. The adversary can acquire the key

either by exploiting flaws or backdoors in the key-

generation software, or by compromising the devices

that store the keys (e.g., at the user-side or in the cloud).

As far as we are aware, this adversary invalidates the

security of most.

II. COMPARISON TO EXISTING SCHEMES

In what follows, we briefly overview several encryption

modes and argue about their security (according to

Definitions 1 and 3) and performance when compared to

Bastion.

CPA-encryption modes

Traditional CPA-encryption modes, such as the CTR

mode, provide ind security but are only 1CAKE secure.

That is, an adversary equipped with the encryption key

must only fetch two ciphertext blocks to break data

confidentiality.

CPA-encryption and secret-sharing

Another option is to rely on the combination of CPA

secure encryption modes and secret-sharing. If the file f

is encrypted and then shared with an n-out-of-n secret-

sharing scheme (denoted as “encrypt then secret share”

in the following), then the construction is clearly (n −

1)CAKE secure and is also indsecure. However, secret-

sharing the ciphertext comes at considerable storage

costs; for example, each share would be as large as the

file f using a perfect secret sharing scheme—which

makes it impractical for storing large files. Secret-

sharing the encryption key and dispersing its shares

Impact Factor Value 4.046 e-ISSN: 2456-3463
National Conference on Quality Up-gradation in Engineering, Science and Technology (NC-QUEST018)

Organized by College of Engineering and Technology, Dhanamgaon Rly-444709

International Journal of Innovations in Engineering and Science, Vol. 3, No.6, 2018
www.ijies.net

63

across the storage servers alongside the ciphertext is not

secure against an ind-adversary. Indeed, if the adversary

can access all the storage servers and download all

ciphertext blocks, the adversary may as well download

all key shares and compute the encryption key. We

assume that the CTR encryption routine starts with a

random IV that is incremented at every block encryption.

AON encryption

Recall that an AONT is not an encryption scheme and

does not require the decrypt or to have any secret key.

That is, an AONT is not secure against an ind-adversary

which can access all the ciphertext blocks. One

alternative is to combine the use of AONT with standard

encryption. Rivest suggests to pre-process a message

with an AONT and then encrypt its output with an

encryption mode. This paradigm is referred to in the

literature as AON encryption and provides (n−1)CAKE

security. Existing AON encryption schemes require at

least two rounds of block cipher encryption with two

different keys. At least one round is required for the

actual AONT that embeds the first encryption key in the

pseudo-ciphertext. An additional round uses another

encryption key that is kept secret to guarantee CPA-

security. However, two encryption rounds constitute a

considerable overhead when encrypting and decrypting

large files. In Appendix A, we describe possible ways of

modifying the AONTs to achieve ind security and

(n−1)CAKE security without adding another round of

block cipher encryption, and we discuss their

shortcomings. Clearly, these solutions are either not

satisfactory in terms of security or incur a large overhead

when compared to Bastion and may not be suitable to

store large files in a multi-cloud storage system.

III. LITERATURE REVIEW

M. J. Atallah, K. N. Pantazopoulos, J. R. Rice, and E. E.

Spafford [1] proposed Secure outsourcing of scientific

computations. A customer who needs computations done

but lacks the computational resources (computing power,

appropriate software, or programming expertise) to do

these locally, would like to use an external agent to

perform these computations. This currently arises in

many practical situations, including the financial

services and petroleum services industries. The

outsourcing is secure if it is done without revealing to

the external agent either the actual data or the actual

answer to the computations. The general idea is for the

customer to do some carefully designed local

preprocessing (disguising) of the problem and/or data

before sending it to the agent, and also some local post

processing of the answer returned to extract the true

answer.

C. Wang, K. Ren, and J. Wang [2] proposed Secure and

practical outsourcing of linear programming in cloud

computing. Cloud computing enables customers with

limited computational resources to outsource large-scale

computational tasks to the cloud, where massive

computational power can be easily utilized in a pay-per-

use manner. However, security is the major concern that

prevents the wide adoption of computation outsourcing

in the cloud, especially when end-user's confidential data

are processed and produced during the computation.

IV. SYSTEM DESIGN

We consider a multi-cloud storage system which can

leverage a number of commodity cloud providers (e.g.,

Amazon, Google) with the goal of distributing trust

across different administrative domains. This “cloud of

clouds” model is receiving increasing attention

nowadays with cloud storage providers such as EMC,

IBM, and Microsoft, offering products for multicloud

systems. In particular, we consider a system of s storage

servers S1, . . . , Ss, and a collection of users. We assume

that each server appropriately authenticates users. For

simplicity and without loss of generality, we focus on

the read/write storage abstraction of which exports two

operations: write(v)This routine splits v into s pieces

{v1, . . . , vs} and sends hv ji to server Sj , for j ∈ [1 . . .

s]. read(·) The read routine fetches the stored value v

from the servers. For each j ∈ [1 . . . s], piece vj is

downloaded from server Sj and all pieces are combined

into v. We assume that the initial value of the storage is a

special value ⊥, which is not a valid input value for a

write operation.

Algorithm

Algorithm 1: Encryption in Bastion.

1: procedure Enc(K, x = x[1] . . . x[m])

2: n = m + 1

3: y′[n] {0, 1}l ⊲ y’[n] is the IV for CTR

4: for i = 1 . . . n − 1 do

5: y′[i] = x[i] _ FK(y′[n] + i)

6: end for

7: t = 0l

8: for i = 1 . . . n do

9: t = t _ y′[i]

10: end for

11: for i = 1 . . . n do

12: y[i] = y′[i] _ t

13: end for

14: return y ⊲ y = y[1] . . . y[n]

Impact Factor Value 4.046 e-ISSN: 2456-3463
National Conference on Quality Up-gradation in Engineering, Science and Technology (NC-QUEST018)

Organized by College of Engineering and Technology, Dhanamgaon Rly-444709

International Journal of Innovations in Engineering and Science, Vol. 3, No.6, 2018
www.ijies.net

64

15: end procedure

Algorithm 2 :Decryption in Bastion.

1: procedure Dec(K, y = y[1] . . . y[n])

2: t = 0

3: for i = 1 . . . n do

4: t = t _ y[i]

5: end for

6: for i = 1 . . . n do

7: y′[i] = y[i] _ t

8: end for

9: for i = 1 . . . n − 1 do

10: x[i] = y′[i] _ F−1

K (y′[n] + i)

11: end for

12: return x ⊲ x = x[1] . . . x[n − 1]

13: end procedure

Fig. 1: Phases of Key Generation

Therefore, we are only left to show that the linear

transformation computed in lines 7-14 of Algorithm 1 is

correctly reverted in lines 2-8 of Algorithm 2. In other

words, we need to show that t =Li=1..n y[i] (as computed in

the decryption algorithm) matches t =Li=1..n y′[i] (as

computed in the encryption algorithm).Recall that t can be

computed as follows:

t =Mi=1..ny[i]=Mi=1..n(y′[i] ⊕ t)=Mi=1..ny′[i]

i=1..ny′[i]!!=Mi=1..nMj=1..n,j6=iy′[j]=Mi=1..ny′[i]

Notice that the last step holds because n is even and

therefore each y′[j] is XORed for an odd number of times.

 We point out that Bastion is not restricted to the

CTR encryption mode and can be instantiated with other

ind-secure block cipher (and stream ciphers) modes of

encryption (e.g., CBC, OFB). To interface with our cloud

storage model described in Section 3.1, we assume that

each user encrypts the data using Bastion before invoking

the write() routine. More specifically, let Enc(K,

・),Dec(K, ・) denote the encryption and decryption

routines of Bastion, respectively. Given encryption key K

and a file f, the user computes v ← Enc(K, f) and invokes

write(v) in order to upload the encrypted file to the cloud.

In this setting, key K remains stored at the user’s machine.

Similarly, to download the file from the cloud, the user

invokes read(・) to fetch v and runs f ← Dec(K, v) to

recover f.

Fig 2: Example

V. CONCLUSION

We then proposed Bastion, a scheme which ensures the

confidentiality of encrypted data even when the adversary

has the encryption key, and all but two ciphertext blocks.

Bastion is most suitable for settings where the ciphertext

blocks are stored in multi-cloud storage systems. In these

settings, the adversary would need to acquire the encryption

key, and to compromise all

servers, in order to recover any single block of plaintext.

We analyzed the security of Bastion and evaluated its

performance in realistic settings. Bastion considerably

improves (by more than 50%) the performance of existing

primitives which offer comparable security under key

exposure, and only incurs a negligible overhead (less than

5%) when compared to existing semantically secure

encryption modes (e.g., the CTR encryption mode). Finally,

we showed how Bastion can be practically integrated within

existing dispersed storage systems.

Impact Factor Value 4.046 e-ISSN: 2456-3463
National Conference on Quality Up-gradation in Engineering, Science and Technology (NC-QUEST018)

Organized by College of Engineering and Technology, Dhanamgaon Rly-444709

International Journal of Innovations in Engineering and Science, Vol. 3, No.6, 2018
www.ijies.net

65

REFERENCES

[1]. NEC Corp., “HYDRAstor Grid Storage,”

http://www.hydrastor.com.

[2]. A. Shamir, “How to Share a Secret?” in

Communications of the ACM, 1979, pp. 612–613.

[3]. D. R. Stinson, “Something About All or Nothing

(Transforms),” in Designs, Codes and Cryptography,

2001, pp. 133–138.

[4]. StorSimple, “Cloud Storage,” http://www.

storsimple.com/.

