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Abstract – The Spherically Symmetric Model has been 

obtained in the general theory of relativity. The source 

for energy –momentum tensor is assumed a perfect fluid. 

The field equation has been solved by using a special 

form of the average scale factor 
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I- INTRODUCTION 

 

In this paper bouncing behaviour of Spherically 

Symmetric cosmological model has been obtained in the 

general theory of relativity. This work is organised as 

follows in Section 2. The metric and field equations have 

been presented. The field equations have been solved in 

section3 by using a physical condition that the expansion 

scalar  is proportional to shear scalar  and the special 

form of average scalar factor 
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t

tttR Proposed by Cai et. al. 

(2011). The physical and geometrical behaviour of the 

model have been discussed in section 4 in the last 

section 5 concluding remarks have been expressed. 

II-  METRIC AND FIELD EQUATIONS 

We consider five dimensional spherically symmetric 

metric of the form 

 2

32

2

1

22

21

22

1

2

2

22

1

22 sinsinsin  dddadradtds

                                    

                                                                                      
(1)

 
Where   the metric functions 21,aa  are functions of 

cosmic time  ‘t’ only. 

The energy – momentum tensor for a perfect fluid is 

  j

i

j

i

j

i pguupT  
                                      

(2)
                                                         

 

where p is the pressure,  is the energy density and 

j

ig is a metric tensor. In co-moving coordinate system, 

iu are the four co-moving velocity vectors which satisfy 

the condition 

4,3,2,1,0  iforuu i

i                                               

and         0,1  iforuu i

i             

From equation (2) the components of energy –

momentum tensor are 
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(3) 

With the help of equation (3) the energy momentum 

tensor takes the form, 

 ppppdiagT
j

i  ,,,,
                                  

(4)
                                 

 

For the perfect fluid, p and  are related by equation of 

state  

10,  p                                                    
(5) 

  
The Einstein’s field equations are given by 

j

i

j

i

j

i TRgR 
2

1

                                                     
(6) 

where
j

iR is a Ricci tensor, R is the Ricci scalar. 

The Ricci scalar for the spherically symmetric metric is 

given by 
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With the help of equations (4) and (5) the field equations 

(6) for the metric (1) are  
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(9)

                                              

 

Here the over dot represents the differentiation with 

respect to t. 

III- SOLUTIONS OF FIELD EQUATIONS 

The field equations (7) to (9) are a system of three highly 

non-linear differential equations in four 

unknown’s ,,, 21 aa .The system is thus initially 

undetermined. So, to obtain the determinate solution to 

above field equations we need one extra physical 

condition to solve the field equations completely. So, 

hence we assume the condition expansion scalar    is 

proportional to the shear scalar   . This condition may 

leads to (Chakraborty S. and Ckakraborty A.K. 1992) 

 m
aa 21   

where ,m are constants 

Here for simplicity and without loss of generality, we 

assume that  

1  

Hence, we have 

    1,21  maa
m

   

   (10) 

 

Collins et al. have pointed out that for spatially 

homogenous metric, the normal congruence to the 

homogenous expansion satisfies that the condition



is 

constant (Collins, Giass et al. 1980). 

In cosmology, the constant deceleration parameter is 

commonly used by several researchers (Akarsu and 

Kilinc 2010, Akarsu and Kilinc 2010, Saha, 

Amirhashchi et al. 2012, Kumar and Singh 2011), as it 

duly gives a power law for metric function or 

corresponding quantity. 

The motivation to choose time–dependent deceleration 

parameter (Deceleration parameter) is the fact that the 

expansion of the universe was decelerating in the past 

and accelerating at present as observed by recent 

observations of Type Ia Supernova (Riess, Filippenko et 

al. 1998, Perlmutter, Aldering et al. 1999, Tonry, 

Schmidt et al. 2003) and CMB anisotropies (Bennett, 

Halpern et al. 2003, Hanany, Ade et al. 2000). Also, the 

transition red shift from deceleration expansion to 

accelerated expansion is about 0.5. Now for a Universe 

which was decelerating in the past and accelerating at 

present, the Deceleration parameter must show signature 

flipping (Amendola 2003, Padmanabhan and Choudhury 

2003, Riess, Nugent et al. 2001,). So, in general, the 

Deceleration parameter is not a constant but time 

variable. The motivation to choose the following scale 

factor is that it provides a time–dependent Deceleration 

parameter. So, we use a special form of deceleration 

parameter as  
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where R is average scale factor of the universe . 

This form is proposed by Cai et al. (Cai, Qiu et al. 2007) 

and then modified by Sadatian (Sadatian 2014). 

Integrating twice equation (11), the average scale factor 

which is time dependent is 
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where t0is initial time and 1 is constant. 

For the metric (1), the scale factor R is given by  
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(13) 

Now, from the equations (12) and (13), we 

obtain  
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Using equation (14), equation (10) leads to  
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With the help of equations (14) and (15), the metric (1) 

becomes 
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which represents spherically symmetric 5-dimensional 

model in general relativity. 

IV- PHYSICAL PROPERTIES OF THE MODEL 

For the spherically symmetric model (16), the physical 

quantities such as spatial volume V, Hubble parameter 

H, expansion scalar , mean anisotropy mA , shear 

scalar
2 , energy density  , and the equation of state 

parameter are obtained as follows: 

The average scale factor R and volume scalar V are 

given by 

                           
3

21

4 aaVR                 (17)

                                    

The generalized Hubble’s parameter H is defined by 
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  are the directional 

Hubble’s parameter. An overhead dot denotes the 

differentiation with respect to cosmic time t. 

The expansion scalar  and Shear scalar   are given by  
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The spatial volume is in the form 
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The Hubble parameter is 
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From fig 4.1 (a), the Hubble parameter H < 0, for t < 1 

and H > 0, for t > 1 indicating that H passes across zero 

(H = 0) at t = 1, which represents that the universe is 

bouncing at t = 1. 

The expansion scalar is  
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The mean anisotropy parameter is  
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The shear scalar is  
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It is observed that    
 

0
34

1
lim 2

2

2

2







 m

m

t 

    for 

1m                                                                                 (26) 

The mean anisotropy parameter mA is constant 

and 0lim 2

2


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

t

 is also constant. Hence the model is 

anisotropic throughout the evolution of the universe 

except at m = 1 i.e., the model does not approach 

isotropy. 

 The matter- energy density is given by 
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(27) 

The equation of state parameter (EoS) is given by 
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To study the physical properties of spherically 

symmetric cosmological model, plots of time versus (a) 

average scale factor (b) spatial volume (c) Hubble 

parameter (d) energy density (e)EoS parameter for the 

values are shown in Fig (4.1) 
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Fig 4.1 Plots of time versus – (a) Average Scale factor 

(b) Spatial Volume (c) Hubble Parameter (d) Energy 

Density (e) EoS Parameter for the values 

2,1,5.0 0  mt . 

From Fig 4.1 (a), in the earlier stage, the average scale 

factor (R) is strictly decreasing (R (t) < 0) and in the 

expanding phase, it increases rapidly (R (t)>0). Hence 

our model is bouncing at some finite time t = 1 (R (t) = 

0) 

From Fig 4.1 (d) the energy density decreases at the 

early stage of evolution when t<1 and goes into the hot 

Big Bang era. The model bounces at t = 1 and after 

bouncing the energy density rapidly increases for t > 1. 

It is seen that from fig.4.1 (e) , before bouncing (at point 

t = 1), the EoS parameter < -1 and after the 

bounce, >-1 for t > 1. The equation of state parameter 

of the universe crosses from <-1 to  >-1. Hence, our 

model is bouncing at t = 1. Thus, it is observed that, a 

bouncing universe model has an initial narrow state by a 

non – zero minimal radius and then develops to an 

expanding phase. After the bounce, the universe enters 

into the hot Big – Bang era.  

V- CONCLUSIONS 

The Spherically symmetric cosmological model has been 

investigated in the general theory of relativity. The 

source for energy – momentum tensor is a perfect fluid. 

The field equations have been solved by using time 

dependent deceleration parameter. The mean anisotropy 

(b) 
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parameter Am is constant and 0lim 2

2


 



t

is 

constant, hence the model is anisotropic throughout the 

evolution of the universe except at m = 1. It is interesting 

to note that a bouncing universe model has an initial 

narrow state by non –zero minimal radius and then 

develops to expanding phase. After the bounce, the 

universe enters into the Hot Big-Bang era. The model 

has a bounce at some finite time t = t0. In particular, for 

the values 2,1,5.0 0  mt the model is 

bouncing at finite time t0 = 1. 
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